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1. Introduction 
1.1 Preface to the second edition 
This paper will give an overview over past and present attempts to predict wind power for single 
turbines, wind farms or for whole regions, for a few minutes up to a few days ahead. It was first 
produced for the ANEMOS project [1], which brought together many groups from Europe involved in 
the field, with up to 15 years of experience in short-term forecasting. The follow-up project 
ANEMOS.plus [2

Since the first edition of this report, 6 years have passed, and the field has practically exploded. Short-
term prediction, in sync with the rise of wind power penetration in more and more countries, has risen 
from being a fringe topic for the few utilities with high levels of wind power in the grid, to being a 
central tool to many Transmission System Operators (TSOs) or power traders in or near areas with 
considerable levels of wind power penetration. At the same time, the amount of literature has risen 
dramatically, and while in the 2003 edition of the report the aim of including every paper ever written 
was feasible, this update has to forego completeness and aim to have at least the most important 
papers represented. While this report was the first large review of short-term prediction literature, a 
considerable (though not necessarily overlapping) number of reviews has appeared since. Various 
versions of this report appeared in [

], which concentrates on the best possible integration of the ANEMOS results in the 
work flow of end users, financed a thorough revision of this report. The literature search involved has 
been extensive, and it is hoped that this paper can serve as a reference for all further work.  

3], [4] and [5], and a gentle (though by now dated) introduction to 
short-term predictions can also be found in Landberg et al. [6
Probably the most comprehensive report to date comes from Argonne National Laboratory [

].  
7]. It gives 

a good introduction to Numerical Weather Prediction (NWP), has a detailed market overview of 
currently available commercial models, and closes with the integration of wind power forecasts into the 
unit commitment process, especially in the US. Ernst et al. [8] show some recent international use 
cases and conclude that using a combination of models and forecasting for larger regions and shorter 
horizons can reduce the average error of the forecasts.  Lange and Focken put their emphasis on the 
developments in Germany in [9]. Pinson gave an overview mainly on probabilistic forecasting [10], and 
concluded that the next breakthroughs were due in “models specific to different weather regimes, 
higher focus on potential use of ensemble forecasts, [and] spatio-temporal aspects of forecast 
uncertainty”. A review on 30 years of history of the wind power short-term prediction is also given by 
Costa et al. [11]. They concluded with a list of unsolved or even unexploited topics, amongst others 
“further research on the adaptive parameter estimation” and “new approaches on complex terrain 
(e.g., more accurate-and computationally feasible-turbulence closure models for microscale tools)”. 
The Canadian Wind Energy Association commissioned a study on international experiences in short-
term forecasting [12]. This work, undertaken by Garrad Hassan (now part of Germanischer Lloyd 
Group), provides an overview of short-term wind energy forecasting including information about 
forecast models, their evaluation, forecasting experiences worldwide as well as a detailed summary of 
forecast providers. Lerner et al. of 3Tier [13] make the business case for forecasting, and argue that 
good predictability can make a difference at the time of siting the wind farm. Lei [14] wrote a short 
review as well. Additionally, a whole book devoted to short-term forecasting has appeared by Lange 
and Focken [15], alongside some book chapters by Ernst [16], Lange3 et al. [17] and a chapter in the 
book by Fox et al. [18]. To the list of overviews also belongs our work on the best practice in the use of 
short-term forecasting [19], which is a summary of the workshop series on the same topic [20
Another change introduced for this report is the more extensive use of graphics from the cited papers. 
Essentially, the thinking here is to try to make the report as useful on its own as possible, and the 
graphs just support this. Finally, in the last years scientific publishing has moved predominantly online, 
which is reflected in the references section containing direct links to the papers and reports wherever 
possible. 

].  

 

1.2 Timescales 
One of the largest challenges of wind power, as compared to conventionally generated electricity, is its 
dependence on the volatility of the wind. This behaviour happens on all time scales, but two of them 

                                                      
3 Please note that there are two prominent Langes in short-term prediction, Bernhard Lange of 
Fraunhofer IWES (the former ISET) and Matthias Lange of Energy and Meteo Systems in Oldenburg. 
Both studied in Oldenburg at the same time, but are not related otherwise. Likewise, there are two 
Nielsens, Torben Skov Nielsen and Henrik Aalborg Nielsen, both previous at DTU.IMM, now at Enfor. 
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are most relevant: One is for the turbine control itself (from milliseconds to seconds), and the other 
one is important for the integration of wind power in the electrical grid, and therefore determined by the 
time constants in the grid (from minutes to weeks). Turbine control is out of scope of this overview, as 
it involves mainly advection of a wind field measured a few seconds before it hits the turbine, usually 
using a lidar in the nose of the turbine, and therefore is qualitatively different from the rest of the 
approaches mentioned here. 
One can distinguish the following types of applications: 
• Allocation of reserves based on the expected wind power feed. This aims at system security and 

is done for instance in Ireland [21
• Optimisation of the scheduling of conventional power plants by functions such as economic 

dispatch etc. The prediction horizons can vary between 3-10 hours depending on the size of the 
system and the type of conventional units included (ie for systems including only fast conventional 
units, such as diesel gensets or gas turbines, the horizon can be below 3 hours). Only a few fully 
integrated on-line applications of this type are met today. Typically, these systems are used for 
smaller or isolated power systems, like island systems, though the optimisation for larger systems 
like Ireland is being evaluated, e.g. in the ANEMOS.plus project.  

]. 

• Optimisation of the value of the produced electricity in the market. Such predictions are required 
by different types of end-users (utilities, TSOs, ESPs, IPPs, energy traders etc.) and for different 
functions such as unit commitment, economic dispatch, dynamic security assessment, 
participation in the electricity market, etc. The ANEMOS project and its successors are mainly 
concerned with the time scale given by the electricity markets, which in most European countries 
is from 0-48 hours. 

• Additionally, even longer time scales would be interesting for the maintenance planning of large 
power plant components, wind turbines or transmission lines. However, the accuracy of weather 
predictions decreases strongly looking at 5-7 days in advance, and such systems are only just 
now starting to appear [22 186, , 326]. As Still [23] reported, shorter horizons can also be 
considered for maintenance, when it is important that the crew can safely return from the offshore 
turbines in the evening4. The north-western German Distribution System Operator (DSO) EWE 
[24

 

] is integrating wind forecasts into transformer maintenance routines to assess the line loading 
of the remaining rerouted electricity flows. 

1.3 The typical model chain 
In general, the models can be classified as either involving a Numerical Weather Prediction model 
(NWP) or not. Whether the inclusion of a NWP model is worth the effort and expense of getting hold of 
it, depends on the horizon one is trying to predict. Typically, prediction models using NWP forecasts 
outperform time series approaches after ca 3-6 hours look-ahead time (see also section 1.4). 
Therefore, all models employed by utilities use this approach.  
Two different schools of thought exist w.r.t. short-term prediction: the physical and the statistical 
approach. In most operational and commercial models, a combination of both is used, as indeed both 
approaches can be needed for successful forecasts. In short, the physical models try to use physical 
considerations as long as possible to reach to the best possible estimate of the local wind speed 
before using Model Output Statistics (MOS) or different relatively simple statistical techniques to 
reduce the remaining error. Statistical models in their pure form try to find the relationships between a 
wealth of explanatory variables including NWP results, and online measured power data, usually 
employing recursive techniques. Often, black-box models like advanced Recursive Least Squares or 
Artificial Neural Networks (ANN) are used. The more successful statistical models actually employ 
grey-box models, where some knowledge of the wind power properties is used to tune the models to 
the specific domain. Some of the statistical models can be expressed analytically, some (like ANNs) 
can not. The statistical models can be used at any stage of the modelling, and more often than not 
combine various steps into one.  

                                                      
4 The German Offshore Test Field Alpha Ventus had an incident like this in December 2009, when 11 
workers were trapped for two days in a storm on the turbines in the North Sea. 
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Figure 1: The various forecasting approaches can be classified according to the type 
of input (SCADA indicates data available on-line). All models involving Meteo Forecasts 
have a horizon determined by the NWP model, typically 48 hours. 
(1):  Short-term statistical approaches using only SCADA as input (horizons: <6 

hours). 
(2):  Physical or statistical approaches. Good performance for >3 hours. 
(2)+(3):  Physical approach. Good performance for >3 hours. 
(1)+(2): Statistical approach using NWP as input. 
(1)+ (2)+(3): Combined approach.  
 

If the model is formulated rather explicitly, as is typical for the physical approach, then the stages are 
downscaling, conversion to power, and upscaling:  
• The wind speed and direction from the relevant NWP level is scaled to the hub height of the 

turbine. This involves a few steps, first finding the best-performing NWP level (often the wind 
speed at 10 m a.g.l. or at one of the lowest model or pressure levels).  
The NWP model results can be obtained for the geographical point of the wind farm or for a grid of 
surrounding points. In the first case the models could be characterised as “advanced power curve 
models”, in the second case as a “statistical downscaling” model. LocalPred for example uses 
principal component analysis and artificial intelligence techniques from the surrounding NWP grid 
points [226,25
The next step is the so-called downscaling procedure. Whether the word comes from the earliest 
approach, where the geostrophic wind high up in the atmosphere was used and then downscaled 
to the turbine hub height, or whether it is used because in some newer approaches the coarser 
resolution of the NWP is scaled down to the turbines surroundings using a microscale model with 
much higher resolution, is not clear. While in the previous edition of this text, mesoscale models 
were grouped under the downscaling model, now we define them as being in the class of NWP 
models, since many current weather models already operate on the mesoscale. For example, the 
current operative models at DMI or DWD are in the order of 2-3 km horizontal resolution, which 
can only be done using mesoscale modelling. 

]. 

The physical approach uses a meso- or microscale model for the downscaling. If a mesoscale 
model is run, the mesoscale model can be run for various cases in a look-up table approach. The 
same procedure holds for microscale models (including CFD). The difference between the two is 
mainly the maximum and minimum domain size and resolution attainable. One of the reasons for 
microscale models with their ability to resolve scales down to tens of metres or even smaller, is 
that the effective resolution, that is the scale at which features are actually resolved in the NWP 
model, is some 4-7 grid points [26, 27, 28]. Ie even for a 2 km resolution, only features in the order 
of 10 km are really taken into account. This means that micro-scale models, except in cases of 
very simple terrain, should always be able to improve the NWP forecasts.  
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• The downscaling process yields a wind speed and 
direction for the turbine hub height. This wind is then 
converted to power with a power curve. The use of the 
manufacturers power curve is the easiest approach, 
although research from a number of groups has shown it 
advantageous to estimate the power curve from the 
forecasted wind speed and direction and measured 
power.  
Most actual statistical models leave this step out and do a 
direct prediction of the power production for single 
turbines or whole wind farms, but all physical and some 
statistical models have this intermediate step explicitly or 
at least implicitly. 
Depending on forecast horizon and availability, measured 
power data can be used as additional input. In most 
cases, actual data is beneficial for improving on the 
residual errors in a MOS approach. If online data is 
available, then a self-calibrating recursive model is highly 
advantageous. This is part of the statistical approach. It 
can have the form of an explicit statistical model 
employed with advanced auto-regressive statistical 
methods, or as an ANN type black-box. However, 
sometimes only offline data is available, with which the 
model can be calibrated in hindsight. In recent years, a number of system operators have 
demanded to get online data from wind farms specifically to be used in their online prediction 
tools. 

• If only one wind farm is to be predicted, then the model chain stops here (maybe adding the power 
for the different turbines of a wind farm while taking the wake losses into account). Since utilities 
usually want a prediction for the total area they service, the upscaling from the single results to 
the area total is the last step. If all wind farms in an area were to be predicted, this would involve a 
simple summation. However, since practical reasons forbid the prediction for thousands of wind 
farms, some representative farms are chosen to serve as input data for an upscaling algorithm. 
Helpful in this respect is that the error of distributed farms is reduced compared to the error of a 
single farm. 

Not all short-term prediction models involve all steps and/or all types of input. In the early days of 
forecasting (1970ies), NWP data was not so widely available, therefore the first approaches were 
done with time series analysis techniques. But in an age where at least GFS forecasts from the USA 
are just a download away, there is no real incentive to not use it. Leaving out a few steps can be an 
advantage in some cases. For example, Prediktor [181] is independent of online data, and can bring 
results for a new farm from day 1, while the advanced statistical models need older data to learn the 
proper parameterisations5. However, this is bought with a reduced accuracy for rather short horizons. 
Alternatively, models using only SCADA data have a quite good accuracy for the first few hours, but 
without NWP input, they are generally useless for longer prediction horizons (except in very special 
cases of thermally driven winds with a very high pattern of daily recurrence). Landberg [29

The opposite is a direct transformation of the input variables to wind power. This is done by the use of 
grey- or black-box statistical models that are able to combine input such as NWPs of speed, direction, 
temperature etc. of various model levels together with on-line measurements such as wind power, 
speed, direction etc. With these models, even a direct estimation of regional wind power from the input 
parameters in a single step is possible. Whether it is better for a statistical model to leave out the wind 
speed step depends on a number of things, like the availability of data or the representativity of the 
wind speed and power for the area of the wind farm or region being forecasted. 

] has shown 
that a simple NWP + physical downscaling approach is effectively linear, thereby being very easily 
amenable to MOS improvements – even to the point of overriding the initial physical considerations.  

                                                      
5 The commissioning behaviour of wind farms does not lend itself easily to statistical recursive 
approaches, as different turbines will be offline for various reasons during the commissioning process, 
so that the power data coming from the wind farm tends to be non-representative at many times. 
Some research is underway eg in the SafeWind project to tackle those issues. 

 
Figure 2: Two different 
approaches for downscaling. 
NWP-A represents physical 
considerations, NWP-B a statistical 
approach or the use of a meso- or 
microscale model.  
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The optimal model is a combination of both, using physical considerations as far as necessary to 
capture the air flow in the region surrounding the turbines, and using advanced statistical modelling to 
make use of every bit of information given by the physical models. 

1.4 Evaluation of forecasting models 
Most of the errors on wind power forecasting stem from the NWP model. There are two types of error: 
level errors and phase errors. Consider a storm front passing through: a level error misjudges the 
severity of the storm, while a phase error misplaces the onset and peak of the storm in time. While the 
level error is easy to get hold of using standard time series error measures, the phase error is harder 
to quantify, although it has a determining impact on the traditional error scores. A conundrum for 
forecasters is that higher resolution forecasts tend to capture more of the variability, but if there is just 
a slight phase error, the traditional error scores as explained in the following will be worse than with a 
very smooth forecast, even though the operator is probably more fond of the more “realistic” looking 
forecast. 
 
Landberg and Watson [182] pointed out that the use of the mean error may lead to misinterpretation 
as negative and positive errors may be averaged to give a low mean error. 
Kariniotakis [30

115

] emphasises the importance of evaluating the performance of a model against a 
variety of criteria, and particularly of using both RMS and MAE of forecasts. The improvement of one 
model over another as measured by MAE is lower than that by RMS as the RMS assigns larger 
weights to large errors. In some cases a positive RMS may even correspond to a negative MAE 
improvement for certain time steps. The same has also been found by Giebel [ ], where optimising 
a MOS function’s parameters lead to different results depending on whether the MAE was the cost 
function or the RMS. 
Nielsen and Ravn [31

These error measures work well when used for the same farm and the same time series. Farms with 
differently variable time series are not that easy to compare. For this reason a skill score was 
developed, which takes the different variability of the time series into account. In this way, different 
results can be compared against each other, without having to worry about the properties of the 
different time series. For a while, the POW’WOW project (Prediction Of Waves, Wakes and Offshore 
Wind) had a Virtual Laboratory [

] rigorously show that the optimal prognosis parameter depends on the error 
criterion. They identify three different criteria: “The prognosis value of the wind power production 
should be close to the average of the realised values. The sum of deviations between the prognosis 
value and realised values should be small. The prognosis should result in a low cost of the 
consequences of prognosis errors.” The first and second criterion are important for the electrical 
balance in the grid, the last one is important for the lowest cost integration of wind energy in the 
market. 

32

 

] for researchers to compete or just to have a platform to source 
data for model development. Unfortunately, the success was quite limited, and hence it was 
discontinued. 

Among the most important features to forecast are sudden and pronounced changes, like a storm 
front passing the utility’s area. To develop a measure for the quality of these forecasts is very difficult, 
however, and the best way to get a feeling for the quality of the forecasts is visual inspection of the 
data set [eg 33

Costello et al. [

]. Other uses of short-term prediction, related to storms, are the possibility of 
scheduling maintenance after or during a storm, as happened in Denmark during the hurricane in Dec 
1999. The same applies for maintenance on offshore wind farms, where the sea might be too rough to 
safely access the turbines.  

201] show an interesting approach: “In order to focus on particular situations, a 
dynamic approach was developed to examine correlations in detail. The aim is to estimate the 
probability of situations where Hirlam fails to predict local conditions for a certain period of time (i.e. 
due to local weather situations). For this purpose, cross-correlation was estimated using a sliding 
window of 100 hours. Then, the distribution of the obtained values was estimated as shown in Figure 
3.  The range of the values is between {–0.4 to 0.92}. This indicates that one should expect short 
periods at which, Hirlam forecasts will not be reliable. The frequency of these periods is however 
limited since the distributions are centered around the 0.8 correlation value.” 
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Figure 3: Distribution of correlation coefficient r(100) between Hirlam  wind speed 
forecasts and measured wind park power. Source: Costello et al. [201] 

There is a wealth of different forecasting criteria, and comparability of performance values in the 
literature was not easy. Therefore, it was one of the tasks of the ANEMOS project to establish a 
common set of performance measures with which to compare forecasts across systems and locations. 
These common error measures are the bias, MAE, RMSE, the coefficient of determination R2, the skill 
score for comparison with other models, and the error distribution as a histogram [34, 35, and as a 
journal paper in 36

 

]. The paper also emphasises the need to split the data set into separate training 
and validation sets, and proposes to use the normalised mean errors for a comparison across different 
wind farms. If there should be normalisation (recommended), it should be with the installed capacity, 
not the mean production. The reason for this is the scalability for large regions in case of additional 
wind farms: for the system operator, the installed capacity is easy to assess, while the mean 
production, especially for new wind farms, is hard to know with sufficient accuracy beforehand. An 
additional evaluation criterion is brought by the Spanish Wind Energy Association: the MAPE (Mean 
Absolute Percentage Error). This error type stems from the law governing that wind farm owners who 
want to participate in the electricity market have to predict their own power. Deviations from the 
declared schedule are punished according to this error measurement. 

Tambke et al. [37

 

] presented the decomposition of RMSE into the three components: bias in mean 
wind speed, bias in standard deviation and dispersion. This is quite useful to determine whether the 
main contribution to the errors of the NWP model come from level errors or biases, or rather (if the 
dispersion term is large) from phase errors. 

Bessa, Miranda and Gama [38

 

] argue, extending the principles of information theoretic learning (ITL) 
criteria in time-adaptive training of neural networks, that the applicability of mean square error (MSE) 
to train a neural network is optimal only if the probability distribution function of the prediction errors is 
Gaussian. Since the wind power forecast error presents an non-Gaussian shape, the authors propose 
two new training criteria based on minimizing the information content of the error distribution (instead 
of minimizing its variance, like in MSE). The first criterion is minimum error entropy (MEE), and 
consists on the minimization of the entropy of the error distribution. The second criterion is maximum 
correntropy criterion (MCC), and is related with a distance measure between two arbitrary scalar 
random variables X and Y satisfying all the properties of a metric. Both training criteria seek an error 
distribution with a shape of a Dirac function (minimum entropy), meaning that all errors would be equal 
and centered on zero. The results for three real wind farms shown that the ITL criteria lead to a better 
performance, compared to MSE, in terms of normalized mean absolute error (an independent 
criterion), and the correntropy based criterion is more effective than the MSE and MEE in isolating 
outliers.  
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During the ANEMOS project, a discussion came up whether it was more “user-friendly” to use the 
availability time of the forecast as zero time, and not the NWP initialisation time. Since the NWP 
calculation usually takes a few hours (the short-term models themselves are usually very quick to run), 
the user does not have access to the predictions from hour zero. However, this way of looking at the 
forecast zero time convolutes the precision of the forecast with the delay involved in getting the 
forecast. A short excursion here on run times of meteorological models: many large weather centres 
bring out a new prediction every six hours, which means that data assimilation and the actual model 
run must be finished well within those six hours. Other approaches are to run the model in a “hot” 
mode to avoid spin-up, and use new data fields every hour to nudge the initial fields. This could (with 
the computing resources at the time) only be run for 12 hours ahead, and is called Rapid Update 
Cycle [39, 40, 41
 

]. 

Vincent et al. [42

 

] worked on a scheme for the spectral verification of forecasts, ie the verification of 
the envelope of variance of various frequencies in the forecasts versus the same frequencies in the 
measurements. The adaptive spectral method they adopted, the Hilbert-Huang transform, verifies 
variability, but not phase, using instantaneous frequencies. In their application for the 75 MSEPS 
members for Horns Rev, differences between the various ensemble members could be distinguished 
and summarised.  

1.5 Typical results 
The verification of model performance is dependent on the error type. Models can be good at one 
particular error, and bad at another. The typical behaviour of the error function for models using time 
series approaches or NWP is shown in Figure 4 for the case of Prediktor applied to an older Danish 
wind farm in the mid-nineties (the farm has been repowered since), using RMSE as the error measure.  
A number of features are noteworthy. Persistence (also called the naïve predictor) is the model most 
frequently used to compare the performance of a forecasting model against. It is one of the simplest 
prediction models, second only to predicting the mean value for all times (a climatology prediction). In 
this model, the forecast for all times ahead is set to the value it has now. Hence, by definition the error 
for zero time steps ahead is zero. For short prediction horizons (eg, a few minutes or hours), this 
model is the benchmark all other prediction models have to beat. This is because the dominant time 
scales of large synoptic scale changes in the atmosphere are in the order of days (at least in Europe, 
where the penetration of wind power is still highest). It takes in the order of days for a low-pressure 
system to cross the continent. Since the pressure systems are the driving force for the wind, the rest of 
the atmosphere undergoes periodicity on the same time scales. High-pressure systems can be more 
stationary, but these are typically not associated with high winds, and therefore not so important in this 
respect. Mesoscale features (fronts, low pressure troughs, large thunderstorms, mesoscale cellular 
convection, gravity waves etc.) operate on time scales of hours, and have reasonable predictability 
using mesoscale models. To predict much better than persistence for short horizons using the same 
input, that is, online measurements of the predictand, is only possible with some effort. 
One can see that persistence beats the NWP-based model easily for short prediction horizons (ca 3-6 
hours). However, for forecasting horizons beyond ca 15 hours, even forecasting with the climatological 
mean (the dashed line) is better. This is not surprising, since it can be shown theoretically [110] that 
the mean square error of forecasting by mean value is half the one of the mean square error of a 
completely decorrelated time series with the same statistical properties (which is similar to persistence 
for very long horizons).  
After about 4 hours the quality of the “raw” NWP model output (marked HWP, full squares) is better 
than persistence even without any postprocessing. The quality of the New Reference Model [110] 
(essentially persistence with a trend towards the mean of the time series) is reached after 5 hours. The 
relatively small slope of the line is a sign of the relatively poor quality of the assessment of the initial 
state of the atmosphere by the NWP, but of the good quality of the predictive equations used in the 
model from that initial state. The first two points in the HWP line are fairly theoretical; due to the data 
assimilation and calculating time of HIRLAM (~4 hours) these cannot be used for practical applications 
and could be regarded as hindcasting. The improvement attained through use of a simple linear MOS 
(the line marked HWP/MOS, the model now known as Prediktor, open squares) is quite pronounced. 
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One line of results is missing in this graph (for reasons of sharper distinction between time-series 
analysis methods and NWP methods): a result for current statistical methods using both NWP and 
online data as input. That line would of course be a horizon-dependent weighting of the persistence 
and the HWP/MOS approach, being lower for all horizons than all the other lines. However, for short 
horizons, it cannot do (significantly) better than persistence, while for long horizons the accuracy is 
limited by the NWP model. Therefore, the line would rise close to the persistence results, and continue 
staying close to the HWP/MOS line. 
The behaviour shown in the graph is quite common across all kinds of short-term forecasting models 
and not specific to Prediktor, although details can vary slightly, such as the values of the RMSE error 
or the slope of the error quality with the horizon. Typical model results nowadays are RMSEs around 
10% of the installed capacity. Improvements over the graph shown here are mostly due to 
improvements in NWP models. Model specific items are to be found in the next chapter.  
 
Another way to classify the error has been shown by WEPROG (Möhrlen and Jørgensen [43] and 
Pahlow et al. [44, 45 Figure 5]). In , two error sources are distinguished: the background error, which 
essentially is due to a  sub-optimal representation of the single point used for verification with the grid 
cell average calculated by the NWP (which is a general problem in meteorology), and a model error 
where good initial data is getting successively worse with increasing horizon due to imperfectly 
captured or simplified atmospheric physics, or due to the amplification of small initial errors as a result 
of the chaotic nature of the atmosphere. 
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Figure 4: Root Mean Square (RMS) error for different forecast lengths and 
different prediction methods. The wind farm is the old Nøjsomheds Odde farm (before 
repowering) with an installed capacity of 5175 kW. NewRef refers to the New Reference 
Model [110]. HWP/MOS refers to the HWP approach (HIRLAM/WAsP/Park, nowadays 
called Prediktor) coupled with a MOS model (Model Output Statistics). 
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Figure 5: Typical errors introduced by the NWP. Source: Möhrlen [46

 

]. 

In these figures, there is no obvious wind speed dependency of the error. Actually, the wind speed 
error of a NWP model doesn’t seem to depend much on the level of predicted wind speed, as Lange 
and Heinemann [305] show in the left graph of Figure 6. But the non-linear power curve (central plot) 
skews the distribution significantly. Therefore, the distribution of errors per power bracket is non-
uniformly distributed. 
 

 
Figure 6: The error is non-linearly distributed over the power brackets. The error 
is fairly linear at about 1 m/s for the shown model. However, folding this through the 
wind farm power curve introduces non-linearities and increases the error in the rising 
part of the power curve, while decreasing it in the flatter parts. Source: [305], central 
plot [15] 

 
Typical forecast accuracies for single wind farms can vary quite dramatically. For the EU ANEMOS 
project, a comparison of 11 state-of-the-art tools was made for 6 sites in Europe [47

Figure 7

], and the 
comparison shows that the differences between the wind farms, but also between the forecasting 
models are quite large.  

 shows the NMAE variation for each site. The ALA test site is characterized as highly complex, 
SOT and GOL as complex, KLI and WUS as flat, and TUNO as offshore. The forecast errors are 
generally higher for more complex terrain, and the difference between the tools is also most significant 
for most complex terrain.  
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Figure 7. NMAE variation for each test case. 12 hours forecast horizon. Qualitative 
comparison. Source: [49] 

For the most predictable wind farms and for a large region like Germany, the average Mean Absolute 
Error for the day-ahead forecast can get down to about 5% of installed capacity. 
 
Figure 8 shows the NMAEs for 10 different forecast systems for 6 sites. The NWP input was the same 
for all forecasting models at a particular site. One can see various things in these plots. First of all, the 
performance of short-term forecasting in general is quite site-specific. Easy terrain is predicted quite 
well by the NWP model, and the quality of the short-term prediction model itself is not so determining 
for the result. Secondly, it is not always the same model which is best across horizons and across 
sites. Thirdly, some models contain autoregressive parts dependent on online data, and are therefore 
better for the very short horizons – see eg the case of Tunø Knob. Furthermore, some short-term 
forecasting systems model the daily variation in error explicitly, and therefore can get rid of the 
extreme diurnal pattern in Wusterhusen. For the most complex site, Alaiz (ALA) in Spain, it is seen 
that the forecast errors are quite high, in some cases above 35 %. Also, it is clear that the forecast 
tools perform very differently on this site. On other, less complex sites, comparisons showed smaller 
errors and a more even performance across the different tools. 
Finally, the average forecast error of the prediction models is plotted versus the complexity of the 
terrain, the so-called Ruggedness IndeX RIX [48

 

]. One can see that the more complex the terrain, the 
more difficult it is to predict properly. However, this graph has to be treated with some care, as it spans 
across 4 different NWP models and contains only 6 data points. 
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Figure 8. NMAE vs forecast horizon for 6 different wind farms from 10 different 
forecast systems. Source: [49] 
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Figure 9: The average forecasting error of 11 forecasting models for the next 
day forecast in relation to the complexity of the terrain. Higher RIX values mean 
higher complexity. Source: [49

A similar data point is achieved with the 12.5km resolution MesoLAPS model (now replaced by the 
ACCESS model) of the Australian Bureau of Meteorology feeding WPPT for a wind farm in Tasmania 
[

] 

50

Interestingly, Vidal et al. [

], Here, on the north-western tip of Tasmania, situated on a cliff, the results are 25% RMSE. The 
RIX of the wind farm is up to 6%, but the complexity of the terrain is higher than this relatively little 
value indicates, with the wind farm being positioned on top of a cliff overlooking the ocean. 

219] come to a slightly different result for the individual members of a 9-
member ensemble using two different Model Output Statistics steps: “The performance of the MOS_1 
and MOS_2 predictions during the first 24 hours of forecast is inversely correlated with the terrain 
complexity; the more complex, the less performance is obtained. During the second and third day, the 
accuracy of the forecast seems to be independent of the terrain features, depending on the NWP 
models used and the training sample for the MOS calculations.” 
 

1.6 Actual results from forecasting models 
For utilities or other potential users, it might be interesting to see what the actual forecast errors look 
like. Therefore, we copied and pasted in this section a number of publicly available forecasts, so that 
potential end users can assess the impact of forecasting (or the lack thereof) on their own business. It 
has to be said that many times, the forecasts will behave like the good forecasts shown here, but that 
is obviously not as interesting for publication than bad forecasts are, therefore we find proportionally 
more bad forecasts being published than good (i.e., unspectacular) ones. 
 
Matthias Lange, now one of the two owners of energy&meteo systems, showed the following plots in 
his PhD thesis [51
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]. The forecasts were done with data from the Deutscher Wetterdienst (DWD) using 
the forecasting tool Previento. In the first two examples, a good forecast is compared to a mediocre 
forecast.  
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Figure 10: A good forecast (6-24h) for a single site in Northern Germany. The 
agreement is rather well, especially the timing of the slopes.  

 
Figure 11: A mediocre forecast (6-24h) for a single site in Northern Germany.  

In Figure 11, we see examples of both major error classes: amplitude errors and phase errors. On day 
254, a typical amplitude error occurs where the rise in production is timed correctly, but the amount of 
wind power produced is severely overstated. On day 257 on the other hand, the amplitude is predicted 
correctly, but the timing of the event is off, especially for the downward slope. This error type is called 
a phase error. 
His last example shows the possibility to derive a quite simple measure of the forecast uncertainty just 
from the predicted power level. Since the slope of the power curve amplifies wind speed prediction 
errors between cut-in and rated wind speed (i.e., between ca 4 m/s and 11 m/s), but filters away the 
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error outside of this range, the uncertainty bands can be described using the predicted power level 
alone. 

 
Figure 12: Time series of prediction and measurement over 18 days (toy means 
time of year in days, in this case it is January dates) for a wind farm in Northern 
Germany. The shaded area is a measure of uncertainty derived of the actual power 
level (low for low and high forecasts, and high for intermediate forecasted power).  

 
An example for the EnBW (Energieversorgung Baden-Württemberg, the smallest German TSO) area 
in south-western Germany is the following forecast, done by energy&meteo systems of Oldenburg. 
The forecast is not for the installed capacity in the German state of Baden-Württemberg, but for the 
EnBW share of the total German wind power production, as this is how the burden sharing in 
Germany works. Later in the same text, it also shows the improvement of short-term forecasting over 
the last years (not copied here).  
 
Here are three examples from Energinet.dk (formerly Eltra), the Danish TSO, from 7 years ago [52

Figure 17

], 
called “The Good, The Bad and The Ugly”. The installed amount of wind power in the Western Danish 
system has not increased dramatically since then, so it is nearly typical for today’s forecasts. However, 
due to improvements in both the NWP (the HIRLAM system of the Danish Meteorological Institute) 
and the forecasting software itself (WPPT) the forecast quality has increased significantly over the last 
years. This does not mean that forecasts like in  (“The Ugly”) cannot happen any more, but 
their frequency and strength is reduced. The size of the grid is about 3GW. 
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Figure 13: The forecast error for the area of EnBW for the day-ahead forecast of 
Previento. Source: [53

 

] 

Figure 14: The forecast error for the area of EnBW for the day-ahead forecast of 
Previento. Source: [53] 
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Figure 15: “The Good”. Average energy per quarter hour on Nov 6, 2000. The 
forecast is from Nov 5, 1100 hours. Måling = measurements, afvigelse = deviation, 
udregnet den = calculated on.  

 
Figure 16: “The Bad”. Average energy per quarter hour on Oct 25, 2000. The 
forecast is from Oct 24, 1100 hours. The Danish note says: “At this time of the day, 
the deviation corresponded to 1/3 of the total demand.” 

 
Figure 17: ”The Ugly”. Average energy per quarter hour on Dec 11, 2000. The 
forecast was calculated on Dec 10, 1100 hours. 
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It is a bit misleading to just call the plots The Good, The Bad and The Ugly, as it implies that there are 
one-third of forecasts in each category. In fact, the bad is not encountered very often, and the ugly has 
happened only a few times since Eltra (now Energinet.dk) has been using wind power forecasts – but 
each time, it is remembered as it leads to such severe consequences. One problem with the plot and 
the forecasts is that WPPT at the time did not take shut-off events into account. This is by design, as 
WPPT is a statistical (i.e., self-learning) forecasting tool and there were too few cut-off events in 
Denmark from which to learn. Only when WPPT went outside of Denmark (to Tasmania [50] and other 
high-wind places) there was the statistical basis to include them. Therefore, while on average the 
forecast quality of WPPT increases through this design, in the particular case that a storm becomes 
strong enough to trigger the emergency cut-off systems of the turbines, it leads to a very large error, 
like the one shown in Figure 18. Here we see the development of successive wind power forecasts. 
As WPPT learns from the current value, it always starts very close to the actual value and forecasts 
from there. Therefore, the cut-off event shown in the figure is not modelled by the first forecast (the 
pink line), but only more or less by the forecast once the wind power already had disappeared (the 
yellow line).  
 

 
Figure 18: The storm in DK on 8 January 2005 and 6 successive forecasts of 
WPPT. 

 
 

 
Figure 19: The typical distribution of errors for Eltra (Western Denmark) in 2000. 
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The last plot (Figure 19) shows that generally, the forecast quality is quite good, with 60% of all errors 
being smaller than 5% of installed wind power capacity. However, in a few selected cases the error 
could reach up to over 40%. If this were to happen in Germany, with an installation of over 20 GW of 
wind power, this would give rise to an error of 8 GW. 
For comparison, figure 20 shows a selection of two-hour forecasts for three sites in the US, done 
without NWP data [54

 

]. Their approach is to use two different models depending on the wind direction 
(“regime switching”). The use of the regime for westerly winds is marked at the top of the graph. 

 
Figure 20: 2-Hour RST-D-CH forecasts of hourly average wind speed at 
Vansycle for the 3-week period beginning on 21 June 2003, in [m/s]. The mean of 
the predictive distribution is shown by the green line, along with the 90% central 
prediction interval that is bordered by the broken red lines. The observed wind speeds 
are shown as black circles, and forecasts issued in the westerly regime are identified 
by the blue marks at the top. 
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1.7 Visualisations of probabilistic forecasts 
A typical error distribution for two different horizons is shown in Pinson and Kariniotakis (2004) [55
 

]: 

 
Figure 21: The distribution of the prediction errors varies as a function of the 
prediction horizon (left, 1-h-ahead prediction error distribution; right, 24-h-ahead 
prediction error distribution). Results are produced using data for a single wind farm in 
Ireland. 

As can be seen in figure 21, the error distribution for 1 hour (where we do not need the NWP 
forecasts) is much more narrow than the errors of the 24-hour forecast. Note that this is for a single 
wind farm in quite high wind speeds, which means that for a region or a country, both results would be 
much more narrow. 
 
Villanger and Bremnes [56

 

] show examples of wind speed forecasts, based on a single NWP model 
(figure 22), but using a technique to estimate the quantiles directly from the distribution of the forecast 
error. The wind farm in question is in Vikna, Norway, and consists of 5 turbines.  

A (admittedly) very good result is shown in Lange et al. [60]: 

 
Figure 22: Example time series of the forecasted power output and its 90% 
probability interval compared to measurements. 
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The example in Figure 22 shows the aggregate next-day forecast of the Wind Power Management 
System by ISET of Germany for all of Germany. The example is chosen to be quite well-fitting, as 
more than 90% of all points of that particular graph are within the 90% interval. 
 

 
Figure 23: Three examples of hourly wind speed (left) and wind power (right) 
forecasts including their 95, 75, 50, 25, and 5 percentiles. Observations are indicated 
by filled circles. 

 
Another example of probabilistic forecasts is shown in Pinson et al. (2006) [57
Figure 24

], reproduced here in 
. 
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Figure 24: Example of wind power point prediction associated with a set of 
interval forecasts. The point predictions are given by WPPT and interval forecasts 
are estimated consequently with the adapted resampling method. 

Here, the forecast for two days is shown together with the derived quantiles. The method is adapted 
resampling, applied to two days of forecasts done by WPPT (the Wind Power Prediction Tool of DTU 
and Enfor) for the offshore wind farm at Tunø Knob in Denmark.  
 
A totally different weather pattern exists in Alberta, Canada [58

 

], where the Chinook comes in patterns 
over the mountains with low predictability. 

 
Figure 25: Measurements and calculated quantiles for 6 wind farms in Alberta, 
Canada. Picture from WEPROG. The measurements are the dark blue dotted line 
which is identical in both plots. The forecasts to the left show the large-scale model, 
the forecasts to the right the smaller scale model. 

Example forecasts from WEPROG for this location are shown in Figure 25, where the left hand plot is 
for a low resolution model and the right hand plot is for a high resolution model. The interesting feature 
here is that, on the left hand plot, the drop in production between 6 and 11 UTC is not captured at all, 
while in the right-hand image it is clearly captured. So for this case, using finer scale modelling helped 
the accuracy of the forecasts a lot. This is not always the case, as the modelling effort performed in 
the ANEMOS project showed [59]. 

http://www.weprog.com/pub/documents/weprog_aeso_workshop_20070424.pdf�
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1.8 Improvements in Short-term Forecasting Quality 
Recently, a few papers have been published on the increasing quality of short-term prediction services 
during the last years. In Germany, the TSO’s are required by law to use multiple forecasts, which 
increased competition both in price and in forecast accuracy. 
The ISET (Institut für Solare Energieversorgungstechnik e.V., Kassel, Germany, now Fraunhofer 
IWES) was the first short-term forecasting provider for transmission system operators in Germany. In a 
widely cited paper for the EWEC 2006, B. Lange et al. [60

Note that their competitor, energy&meteo systems, claims a forecasting RMSE of below 5% for the 
day-ahead forecast for all of Germany in 2008 [

] presented the following plot for the 
accuracy of the next-day forecast in the E.On control zone. They state the main reasons for the 
improvement were (i) taking into account the influence of atmospheric stability into the models which 
led to a reduction in forecast error (RMSE) by more than 20% for the example of one German TSO 
control zone (ii) a combination of different models, both for forecasting methods as well as for NWP 
models. The comparison of the mean RMSE of a wind power forecast for Germany obtained with the 
WPMS based on ANN with input data from three different NWP models and with a combination of 
these models showed a decrease in RMSE from approx. 6% to 4.7%.    

61], which also the IWES has achieved [62
A similar plot, though constrained to the last two years, was shown by Krauss et al. [

]. 
63

 

] for the EnBW 
TSO area. They show the monthly accuracy of three different forecasting systems for the aggregate 
error, and conclude that there are significant changes in forecast accuracy from month to month, and 
that the ranking of the three models changes from month to month as well.  

 
Figure 26: The development of the forecast error during the last years in the 
E.On Netz area. The numbers in square brackets are references from Lange et al. 
[60]. 
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2. Time series models 
For short horizons, the relevant time scales are given by: 
 the mechanics of the wind turbine: typically the generator, gearbox, yaw mechanism and most of 

all, the (blade) pitch regulation. The time scales involved are in the order of turbulence, ie 
seconds. The purpose is the active control of the wind turbines. Wind on those time scales is 
inherently non-stationary (compare also the excursion on why wind is non-stationary in [64

 the type of the power system into which the wind turbines are integrated. As mentioned in the 
introduction in small or medium isolated systems the relevant time scale is given by the type of 
conventional units (“fast” or “slow”) and the functions for which the forecasts are required (ie for 
economic dispatch horizons can be 10 minutes to 1 hour while for unit commitment they can be a 
few hours head). It is typical for smaller island systems to consist of Diesel generators with quite 
short time scales. 

]), and 
can best be forecasted with a Lidar staring into the wind and a simple advection scheme of the 
measured wind field a few seconds ahead the rotor. 

The typical approach is to use time series analysis techniques or neural networks.  
 

2.1 Direct time series models 
If the forecasting horizon is not too long (see the discussion of Figure 4 when that happens), wind 
speed and power can be forecast just using time series analysis methods, without resorting to actual 
weather forecasts. Direct time series models are models which use recent observed values of wind 
and other variables to predict the future wind speed.  
 
While there had been attempts to forecast wind speeds before, the first paper considering wind power 
forecasts came from Brown, Katz and Murphy in 1984 [65

290

]. In retrospect, it is surprising how complete 
the paper already was, using a transformation to a Gaussian distribution of the wind speeds, 
forecasting with a AR (AutoRegressive) process, upscaling with the power law (but discussing the 
potential benefit of using the log law), and then predicting power using a measured power curve. 
Additionally, the removal of seasonal and diurnal swings in the AR components is discussed, 
alongside prediction intervals and probability forecasts. Noteworthy is also that their work was 
sponsored by Bonneville Power Administration, which much later entered the forecasting business 
again as a sponsor, this time with a special emphasis for ramps prediction [ ,291]. 
Bossanyi [66

A similar approach is used in Wilhelmshaven [

] used a Kalman Filter with the last 6 values as input and got up to 10% improvement in 
the RMS error over persistence for 1-min averaged data for the prediction of the next time step. This 
improvement decreased for longer averages, and disappeared completely for 1-hourly averages.  

67] for the estimation of the wind with the aim of flicker 
reduction. Vihriälä et al. [68
Dambrosio and Fortunato [

] uses a Kalman filter for the control of a variable speed wind turbine.  
69

Fellows and Hill [

] used a one-step-ahead adaptive control by means of a recursive least 
squares algorithm for the electrical part of the turbine. They show a fast and reliable response to a 
step in the wind. 

70

Nogaret et al. [

] used 2-hour ahead forecasts of 10-min wind speeds in a model of the Shetland 
Islands electricity grid. Their approach was to use optimised, iterative Box-Jenkins forecasting from 
detrended data, which then was subjected to central moving average smoothing. For 120 minutes 
look-ahead time, the RMS error reduction over persistence was 57.6%.  

71

Tantareanu [

] reported that for the control system of a medium size island system, persistent 
forecasting is best with an average of the last 2 or 3 values, ie 20-30 minutes.  

72

Kamal and Jafri [

] found that Autoregressive Moving Average (ARMA) models can perform up to 30% 
better than persistence for 3-10 steps ahead in 4-sec averages of 2.5Hz-sampled data.  

73

Dutton et al. [

] found an ARMA(p,q) process suitable for both wind speed simulation and 
forecasting. The inclusion of the diurnal variation was deemed important since the (mainly thermally 
driven) climate of Pakistan exhibited quite strong uniformity especially in the summer months.  

74] used a linear autoregressive model and an adaptive fuzzy logic based model for the 
cases of Crete and Shetland. They found minor improvements over persistence for a forecasting 
horizon of 2 hours, but up to 20% in RMS error improvement for 8 hours horizon. However, for longer 
horizons, the 95% confidence band contained most of the likely wind speed values, and therefore a 
meteorological-based approach was deemed more promising on this time scale.  
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In the same team, Kariniotakis et al. [75,76

Fukuda et al. [

] were testing various methods of forecasting for the Greek 
island of Crete. These included adaptive linear models, adaptive fuzzy logic models and wavelet 
based models. Adaptive fuzzy logic based models were installed for on-line operation in the frame of 
the Joule II project CARE (JOR3-CT96-0119). 

77

Hunt and Nason [

] worked on an AutoRegressive model for blade angle optimisation with data for 
Okinawa, Japan. Using data mining, they found that the use of additional variables was helpful only in 
December, but not in June.  

78

Torres et al. [

] used an analysis of principal components of wavelets derived from wind speed 
time series for a measure-correlate-predict technique. The use of the words “short-term prediction” is 
not the same as the one used in our context. 

79

Balouktsis et al. [

] use an ARMA model to forecast hourly average wind speeds for five sites in Navarra. 
They used site and month specific parameters for the ARMA model. The ARMA model usually 
outperformed persistence for the 1-hour forecast, and always was better in RMSE and MAE for higher 
horizons up to 10 hours ahead. The two complex sites have a slightly higher RMSE in general, but are 
still in the same range as the other sites. In general, 2-5% improvements for the 1-h forecast 
correspond to 12-20% improvement for the 10-h forecast.  

80] used stochastic simulation models. They removed the annual and daily 
periodicities of the measured data and modelled transformed hourly average data with ARMA models. 
A similar approach is shown by Daniel and Chen [81

Lin et al. [

]. They used stochastic simulation and forecast 
models of hourly average wind speeds, taking into account autocorrelation, non-Gaussian distribution 
and diurnal nonstationarity and fit an ARMA process to wind speed data. 

82
Justus et al. [

] reported about predicting wind behaviour with neural networks. 
83

Geerts [

] developed a method to compute power output from wind-powered generators and 
they applied it to estimate potential power output at various sites across the United States. Values of 
the Weibull distribution parameters at approximately 135 sites have been evaluated and projected to a 
constant height of 30.5 m and 61 m.  

84
Makarov et al. [

] reported about a system-theoretic approach in the short range prediction of wind speeds. 
85

Schwartz and Milligan [

] describe a major California ISO-led project. Therein they developed prototype 
algorithms for short-term wind generation forecasting based on retrospective data (eg pure 
persistence models). The methods tested include random walk, moving average, exponential 
smoothing, auto-regression, Kalman filtering, “seasonal” differencing and Box-Jenkins models. The 
latter one demonstrated the best performance. They also used a bias compensation scheme to 
minimize the look-ahead forecast bias. For forecasts for the next hour and 1 hour ahead the total ISO-
metered generation is predicted with MAE below 3% and 8% of the maximal observed generation 
correspondingly. 

86

Kavasseri and Seetharaman [

] tested different ARMA models for forecasts up to 6 hours for two wind 
farms in Minnesota and Iowa. Their main conclusion was that model performance was highly 
dependent on the training period - one should always try to have a parameter set-up procedure using 
data from a very recent period.  

87
El-Fouly et al. [

] used a fractional ARIMA model up to 48 hours and beat persistence. 
88

 

] used wind speed and power forecasting technique using the Grey predictor model 
GM(1,1).  They outperformed the persistence model during a test period of 50 hours. 

Baïle, Muzy and Poggi [89
110

] predicted wind speed 1-12 hours ahead and beat persistence, the New 
Reference model [ ] and an ANN. “Inspired by recent empirical findings that suggest the existence 
of some cascading process in the mesoscale range, we consider that wind speed can be described by 
a seasonal component and a fluctuating part represented by a ‘multifractal noise’ associated with a 
random cascade.” 
 
Pinson et al. [90

 

] found that wind power and especially wind power variability from large offshore wind 
farms (Horns Rev and Nysted) occur in certain regimes, and therefore tested “regime-switching 
approaches relying on observable (i.e. based on recent wind power production) or non-observable (i.e. 
a hidden Markov chain) regime sequences” for a one-step forecast of 1-min, 5-min and 10-min power 
data. “It is shown that the regime-switching approach based on MSAR models significantly 
outperforms those based on observable regime sequences. The reduction in one-step ahead RMSE 
ranges from 19% to 32% depending on the wind farm and time resolution considered.” 
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2.2 Neural networks for time series forecasts 
Artificial Neural Networks (ANN) are another family of models that use data from online measurements 
as input. Most groups in the field have used them, but despite their scientific merits in improvements 
over plain persistence, they did not catch on. The improvements attainable were usually deemed not 
enough to warrant the extra effort in training the neural networks. Note that this section is only 
concerned with time series modelling of a single time series; it does not include the use of neural 
networks in cases with more than one input, eg both measured power and NWP input. 
 
Beyer et al. [91

Tande and Landberg [

] found improvements in RMS error for next-step forecasting of either 1-min or 10-min 
averages to be in the range of 10% over persistence. This improvement was achieved with a rather 
simple topology, while more complex neural network structures did not improve the results further. A 
limitation was found in extreme events that were not contained in the data set used to train the neural 
network. 

92

Alexiadis et al. [

] examined 10s forecasts for the 1s average output of a wind turbine and 
found that the neural networks performed only marginally better than persistence. 

93

Bechrakis and Sparis [

] used the differences of wind speeds from their moving averages (differenced 
pattern method) and found this technique to be superior to the wind speed normally used as input. 
They achieved improvements of up to 13% over persistence, while for the same time series the 
standard neural network approach yielded only 9.5% improvement. 

94

Sfetsos [

] used neural networks to utilise information from the upwind direction. Their 
paper does not give any numbers on the increase over persistence, since their aim is to predict the 
resource rather than to do short-term prediction. 

95

Mohandes et al. [

] applied ARIMA (Autoregressive Integrated Moving Average) and feed-forward neural net 
methods to wind speed time-series data from the UK and Greece, comparing the results of using 
either 10-minute or hourly averaged data to make a forecast one hour ahead. For both data sets, 
neither forecasting method showed a significant improvement compared to persistence using hourly-
averaged data, but both showed substantial (10-20%) improvement using 10-minute averages. The 
result is attributed to the inability of hourly averages to represent structure in the time series on the 
high-frequency side of the ‘spectral gap’, lying at a period of typically around 1 hour. 

96

EPRI, the US Electric Power Research Institute, has recently [

] show that Support Vector Machines outperform multilayer perceptron neural 
networks for mean daily wind speed data from Medina city, Saudi Arabia.  

97

Kretzschmar et al. [

] announced their work on the 
adaptation of their ANNSTLF tool (Artificial Neural Network Short-Term Load Forecaster) to wind 
power forecasting. They target the range of up to 3 hours with 5-minutely intervals. 

98

 

] used neural network classifications for the forecasts of strong winds and wind 
gusts at Geneva and Sion in Switzerland. The quality of hit- and miss-rates was clearly improved from 
persistence for 1, 6, 12 and 24 hour horizons. “The input features selected for the classifiers were 
several lags of the local wind speed, wind gust, and wind direction time series, time, and data [sic], 
and additional features from the ECMWF analysis that corresponded closest to a 24-h lead time.” 
They also analysed the benefits of using many meteorological observations of surrounding masts, and 
found that “the correlations between speed or gusts to pressure or temperature were found to be more 
relevant than the correlations of speed or gusts to wind direction, humidity, radiation, or rain.” Despite 
that, and due to the facts that data usually costs money and that the same accuracy could be obtained 
just with the local observation, they decided against the use of surrounding data. Partly, this was due 
to the difficulty in determining the “upstream” station at all times. 

Sfetsos [99, 100

Wu and Dou [

] compared a number of methods, including a Box-Jenkins model, feed-forward neural 
networks, radial basis function networks, an Elman recurrent network, ANFIS models (Adaptive 
Network based Fuzzy Inference System), and a neural logic network based on their ability to forecast 
hourly mean wind speeds. All non-linear models exhibited comparable RMS error, which was better 
than any of the linear methods. For the one hour ahead, the best model was a neural logic network 
with logic rules, reducing the error of persistence by 4.9%.  

101

Potter and Negnevitsky [

] used a combination of a Fuzzy Classifier with a temporal neural network for non 
linear wind prediction.  

102] used an ANFIS model (adaptive neuro-fuzzy inference system) to 
predict just the u (northward) component of the direction 2.5 min ahead in Tasmania. On the 21-month 
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test set, they were able to reduce the 30% mean absolute percentage error (without properly defining 
it) of persistence for the step-ahead prediction to 4%.  
Steen [103

In a study for the Mexican Electric Utility Control Centre, Cadenas and Rivera [

] used the feedforward algorithm of ANN as a basis to compute a load forecast of wind 
energy with an error of up to 6% and a  more or less constant correlation of 0.99.  

104] compare different 
configurations of neural networks, and find that the simplest (two layers, two input neurons, one output 
neuron) outperformed more complex ones for one-step forecasts of hourly wind data in La Venta, 
Mexico. However, their way of presenting the findings, as MAE of 0.0399 without specifying what it is 
(m/s would be extremely low), makes one suspicious of the rest of the paper. In an earlier paper [105

For an anemometer near Mumbai, More and Deo [

], 
they had compared the merits of an ARIMA model and a neural network for the same test case, and 
had concluded that a Seasonal ARIMA model worked better than the relatively simple ANN they were 
using. 

106

The University of Ulster had a press release in 2003 [

] outperformed ARIMA models using neural 
networks for the 1-step ahead forecasts of mean daily, weekly and monthly wind speeds. “Forecasting 
accuracy decreased as the interval of forecasting reduced from one month to one day.” 

107] stating that they used Artificial Intelligence 
techniques to forecast wind energy up to 12 hours in advance. They claim that they would forecast 
produced wind energy within a 12 percent margin. The press release continues to claim that the 
“technology will also enable developers to predict wind speeds and power output for the next 2 or 3 
years”. This approach was later published by Campbell and Adamson [108

Kusiak, Zheng and Song [

], who examined “the 
statistical approaches of ARIMA, Moving Averages and compare[d] their performance against both 
Persistence and a novel Multi-Layered Perceptron which is trained using the Generalised Delta Rule, 
demonstrating that such an MLP implementation can demonstrate significantly improved accuracy 
over these more traditional statistical approaches.” 

109

2.3 An explanation of the time series model improvements 

] explored the viability of 5 data mining algorithms for wind speed and 
wind power 1-step to 3-step ahead prediction. The 3-step ahead uses the 1-step ahead and 2-step 
ahead predictions as input. “Two of the five algorithms performed particularly well. The support vector 
machine regression algorithm provides accurate predictions of wind power and wind speed at 10-min 
intervals up to 1 h into the future, while the multilayer perceptron algorithm is accurate in predicting 
power over hour-long intervals up to 4 h ahead.” They further muse: “One disadvantage of the 
proposed approach is that the time series model uses its own previously predicted values. As the 
number of prediction steps increases, the errors get accumulated. A possible approach for improving 
prediction accuracy is to build a set of prediction models for each time step.” 

A general note on time series models (neural network or otherwise): Some of the improvement of the 
time series approach over persistence can be explained with a term taking the time series (running) 
mean into account. Nielsen et al. tried a few years ago to introduce this as the New Reference Model 
[110 Figure 4] (see the blue line marked NewRef in ). In essence, it predicts the power p(t) using the 
power p(t-n) (n being n timesteps back) and the mean µ of the time series. Of course, disregarding µ 
and having n=1, this would be the persistence model itself. However, the new reference is written as 
 

p(t)=a(n)*p(t-n) + (1-a(n))*µ. 
 
a(n) is the autocorrelation of the time series n steps back. This simple model can achieve the typically 
10% RMS error improvements over persistence found by many authors in chapters 2.1 and 2.2 using 
more or less advanced time series analysis techniques. 
 

2.4 Power modelling 
Comparison of direct wind power prediction against wind speed forecasts with subsequent conversion 
to wind power [111,112

Madsen [

] using autoregressive models showed that the use of wind speed predictions 
as explanatory variable is important for prediction horizons up to 8-12 hrs. For longer prediction 
horizons, use of separate wind speed forecasts offers no advantage over direct wind power prediction. 

113] and Nielsen [114

 

] found that two-stage modelling (conversion of wind speed predictions 
to wind power, in which correlation structure in power measurements is disregarded) are generally 
inferior to models that take the power correlation into account. 
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Wind farm forecasting using any of the above methods is likely to benefit from forms of statistical post-
processing such as the MOS system. Any use of meteorological models must involve a two-stage 
process, so the MOS process should operate on the final result (the predicted wind power) instead of 
trying to optimise the local wind speed prediction.  
Giebel [115] showed that, when using NWP model winds and a fixed power curve in Prediktor, it is 
best to use MOS acting on the wind speed, ie before putting it through the power curve, rather than on 
the final power output. Likewise, Louka et al. [116

Power curve modelling from wind speed was done by Cabezon et al. [

] showed that Kalman filtering SKIRON or RAMS 
results before feeding them into a power forecasting module significantly improves the forecast skill. 
The 0.1°x0.1° SKIRON model had its bias removed, and was thereby much better for power 
predictions than without the filter. The same held true for the RAMS model with runs down to 0.5km 
horizontal resolution. Due to computing power limitations, only 2 days could be run. Using those 
results, it showed that Kalman filtering even the 12km run gave a better power forecast than even the 
0.5km resolution run. “Therefore, this work suggests that the use of very expensive computational 
facilities to perform high-resolution (6 km) applications for wind energy predictions may be avoided by 
the combined use of moderate NWP model resolution and an adaptive statistical technique such as 
Kalman filtering; providing similar or even more accurate predictions at wind farm scale.” 

117

Collins, Parkes and Tindal [

]. They used 5 methods 
based on statistical tools (linear models with binning methods and a fuzzy logic model) and found an 
improvement the more accurate the models were and the more effects they took into account. 

118

More recently, Kusiak, Zheng and Song [

] point out that for large wind farms (>100MW), the local effects vary so 
much across the site that a simple application of an upscaled manufacturers power curve is not good 
enough. An advanced wind farm power curve model taking air density, heterogeneous flow field and 
wake effects into account and finetuned with local measurements reduced the power MAE for the 
power model being fed with onsite met mast wind speeds from 7.5% to 1.5% for a site in the UK. Fed 
with actual NWP forecasts, the day-ahead error was reduced by 1.2%. For a site in the US, the 
numbers were 11.6%, 4.6% and 0.9% improvement, respectively. 

119 109 ] used the data mining approaches from [ ] with NWP 
input  to predict for up to 12 hours and up to 84 hours ahead. As input they used two US NWP models, 
the Rapid Update Cycle RUC and the North American Mesoscale NAM model, with the 16 data points 
around the wind farm. Both models had wind speed and direction at various levels plus air density and 
potential temperature difference. The NAM also had sensible heat flux and the percentage of 
vegetation in the grid point. Of this multitude of parameters, a boosting tree algorithm was used for 
feature selection, which reduced the number of data to the four nearest grid points. Data from those 
was then further reduced via principal component analysis, where all units with the same unit were 
collected in the first two principal components. The resulting values were then fed either to a model 
directly predicting the power output, or one predicting wind speed, which then was transformed into 
power. The direct approach was clearly better than using an intermediate wind speed forecast. Of the 
five models used, the Multilayer Perceptron outperformed k-Nearest Neighbour, Support Vector 
Machine regression, Radial Basis Function network, Classification and Regression Tree and Random 
Forest algorithms. Note that the available power measurement data was only 3 months long. In 
another paper, Kusiak and Li [120

For statistical power curve modelling, Pinson et al. [

] clustered 10-sec observations from only one week of data from a 
single wind turbine and compared the mentioned 5 models.  

121

 

] demonstrated the advantage of orthogonal 
fitting at each point of the power curve, claiming that the usual way assumes noise only in the power, 
not in the predicted wind speed. “This assumption is not realistic for the wind power forecasting 
application, when the wind-to-power conversion function is estimated with meteorological forecasts as 
explanatory variables.” 

An interesting hybrid approach was described by H.Aa. Nielsen et al. [122

 

]. The statistical power curve 
estimation of WPPT was initialised using the wind farm power curve from WAsP, in the way Prediktor 
uses it. The advantage was most pronounced for the first few months of operation of the model, and 
for wind power classes where only few data points were available. Eg for wind speeds above 10m/s, 
the NRMSE is reduced with over 30% in the first 6 months. 

Barthelmie et al. [123] surveyed a number of short-term prediction providers as to their implementation 
of explicit wake modelling in the short-term prediction model, and found that in most models, the direct 
estimation of a wind farm power curve from measured data and predicted wind data obviates the need 
for an actual wake model, as it is implicitly taken into account. 
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3. Meteorological modelling for wind power predictions 
The main error in the final forecast comes from the meteorological input. For example, Sanchez et al. 
[124

 

] show that the Spanish statistical tool Sipreolico run with on-site wind speed input has a much 
higher degree of explanation than HIRLAM forecasts. This means that given a representative wind 
speed, Sipreolico can predict the power quite well. It is the wind speed input from the NWP model that 
is decreasing the accuracy significantly. Therefore, it is logical to try to improve the NWP input in order 
to come up with significant improvement in forecasting accuracy.  

Figure 27: The error comes from the NWP. The figure shows the difference in 
degree of explanation between Sipreolico run with HIRLAM input (from an older 
version of the Spanish HIRLAM) and Sipreolico run with on-site wind speed input. 
Source: Sanchez et al. [124]. 

 
3.1 Operational NWP systems 
This section gives an overview of operational numerical weather prediction (NWP) models having 
relevance for wind power prediction in Europe. Various global forecasting systems exist, designed to 
predict large scale synoptic weather patterns. But the increase in computer resources during the next 
years will allow the global models to overtake the current role of the limited area models (LAM) down 
to about 10km horizontal resolution. The LAMs, which get their boundary conditions from the global 
models and operate at the moment at horizontal resolutions of 7 to 12km, will be replaced by high 
resolution, convection resolving LAMs with horizontal resolutions well below 4km.   
 
3.1.1 Global models  
Figure 28 shows a comparison of different global models for the root mean squared error (RMSE) of 
10m wind speed forecasts over the North Sea at 18 different buoys [125]. The verification charts are 
monthly scores which are updated regularly and can be accessed via the ECMWF web page6

                                                      
6 http://www.ecmwf.int/products/forecasts/d/charts/medium/verification/wave/intercomparison/ 

.    
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Figure 28: Comparison of of different global forecast models at 18 buoys over the 
North Sea in April 2009. The institutions are listed in table 1 except PRTOS (Puertos 
del Estado, Spain), FNMOC (Fleet Numerical Meteorology and Oceanography Center, 
USA), SHOM (Service Hydrographique et Océanographique de la Marine, France). 

 

Table 1: Global numerical forecast models run operationally at national weather 
services  

Symbol 
Figure 29 

Institution model 
name 

resolution/ 
model levels 

approx. 
horiz. res. 

Grid Planned 

ECMWF European Center for 
Medium Range Weather 
Forecast 

IFS TL799/L91       
 

~25km Spectral TL1279/L150 in 
2009/10 

METOF Meteorological Office, UK UM 0.375°x0.5625°/L
50   

~40km Gaussian 
grid 

25km/L70 
2009/10 

MSC Meterological Service of 
Canada 

GEM 0.3°x0.45°/L58   ~30km Gaussian 
grid 

Global 20-25 
km uniform 
resolution, 90 
levels, <2015 

NCEP National Center for 
Environmental Prediction, 
USA 

GFS TL382/L64         ~50km Spectral  

METFR Meteo France ARPEGE TL538/L60 
 

~ 15km 
over 
France 

Spectral + 
gaussian 
grid with 
stretching 
factor 

TL798/L70 
2009/10 

DWD Deutscher Wetterdienst, 
Germany 

GME 40km/L40 
 

40km Icosaeder new model 
ICON (>2010) 

AUSBM Bureau of Meteorology, 
Australia  

GASP 
 

TL239/L29 
    

~80km Spectral  

JMA Japan Meteorological 
Agency 

JMA-GSM TL319/L40        ~60km Spectral  

KMA Korea Meteorological 
Agency 

GDAPS TL426/L40        ~45km Spectral  
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Sources Table 1: 
− ECMWF: http://www.ecmwf.int/ 
− UK Met. Office: http://www.metoffice.gov.uk/science/creating/daysahead/nwp/um_config.html 
− MSC: http://www.msc-smc.ec.gc.ca/cmc/op_systems/global_forecast_e.html 
− Meteo France: http://www.cnrm.meteo.fr/gmap/ 
− DWD: http://www.dwd.de/modellierung/ 
− BoM Australia: http://www.bom.gov.au/nmoc/ab_nmc_op.shtml 
− JMA: http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-nwp/index.htm 
− KMA: http://www.kma.go.kr/ema/ema03/gdps_eng.html 
− http://www.ecmwf.int/newsevents/meetings/workshops/2008/high_performance_computing_1

3th/presentations/ 
 
Table 1 shows a list of the properties of the most commonly used global forecast models. It can be 
seen that the resolution of the global models will further increase and the first models will have 
horizontal grid resolutions well below 20km in 2010. There is a consensus in the European SRNWP 
community that global models such as IFS at ECMWF will take over the role of Limited Area Models in 
its current form. There are developments to statically nest the limited area model directly into the 
global model (e.g. ICON at DWD, ARPEGE at Meteo France) with horizontal resolutions up to 5km in 
certain target areas (e.g. Europe). In cooperation with Meteo France a non-hydrostatic kernel of the 
ECMWF-IFS will be developed.   
 
3.1.2 Limited area models 
 
The SRNWP (Short Range Numerical Weather Prediction, http://srnwp.met.hu/) Working Group was 
established during the autumn of 1993 in Toulouse (Meeting on Organisation of Short Range 
Numerical Weather Prediction Developments in Europe, see more details at 
http://www.cnrm.meteo.fr/aladin/meetings/SRNWP-NT/birth1993.html). Since that time the SRNWP 
project is the main vehicle for the cooperation between the European limited area modelling consortia. 
These numerical weather prediction consortia are the ALADIN (http://www.cnrm.meteo.fr/aladin), 
COSMO (http://www.cosmo-model.org), HIRLAM (http://www.hirlam.org), LACE (http://www.rclace.eu) 
projects and the MetOffice (http://www.metoffice.com/research/nwp/index.html).  
 
 

 
Figure 29: Short Range Numerical Weather prediction (SRNWP) in Europe. The 
figure shows a list of the national meteorological services and their cooperation in the 
different modelling consortia. Each consortium runs a separate limited area model 
(LAM). 
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Table 2: EUMETNET-SRNWP overview of operational Numerical Weather Prediction Systems in 
Europe as of July 2009 compiled by Detlev Majewski, Deutscher Wetterdienst, Germany. 
 

 
 
 
 

Country Model Mesh size 
(km)

Number of 
gridpoints

Number of 
levels

Initial times & Forecast 
ranges (h)

Type of data 
assimilation

Model providing 
LBC data

16 610 x 568 40 00/06/12/18             +60h 3D-VAR ECMWF/IFS

5.5 496 x 372 40 00/06/12/18             +54h Surf-ana only DMI16

5.5 550 x 378 40 00/06/12/18             +36h Surf-ana only DMI16

11 366 x 280 60 00/06/12/18             +54h 3D-VAR fgat ECMWF/IFS

3.3 306 x 306 60 00/12                      +36h 3D-VAR fgat EMHI11

HIRLAM 16 582 x 448 60 00/06/12/18             +54h 4D-VAR ECMWF/IFS

HIRLAM 7.5 482 x 360 60 00/06/12/18             +54h 3D-VAR fgat ECMWF/IFS

HARMONIE 2.5 300 x 600 40 00/12                      +24h none HIRLAM

16 438 x 284 60 00/06/12/18             +54h 3D-VAR ECMWF/IFS

5.5 438 x 395 60 00/06/12/18             +30h 3D-VAR HIRLAM16

Netherlands HIRLAM 11 816 x 650 60 00/06/12/18             +48h 3D-VAR ECMWF/IFS

HIRLAM 12 864 x 698 60 00/06/12/18             +60h 3D-VAR fgat ECMWF/IFS

8 344 x 555 60 00/06/12/18             +60h 3D-VAR fgat ECMWF/IFS

4 300 x 500 60 00/12                      +60h Surf-ana only HLM 11

UM 4 300 x 500 38 00/12                      +60h None HIRLAM 8

17 582 x 424 40 00/06/12/18             +72h 3D-VAR ECMWF/IFS

5.5 606 x 430 40 00/06/12/18             +36h 3D-VAR HLM17

22 306 x 306 40 00/06/12/18             +48h 4D-VAR ECMWF/IFS

11 256 x 288 60 00/06/12/18             +72h 3D-VAR ECMWF/IFS

5.5 294 x 441 60 00/06/12/18             +48h 3D-VAR HIRLAM 11

9.6 300 x 270 60 00/12                      +72h none ARPEGE

06/18                      +60h

7 240 x 240 46 00 +  54h; 06           +48h none ALADIN- 

12 +  42h; 18           +36h FRANCE

00,06,12,18             +60h none ARPEGE

Bulgaria ALADIN 12   90 x   72 41 none ARPEGE

Croatia ALADIN 8 229 x 205 37 00/12                      +72h none ARPEGE

9 309 x 277 43 00/06/12/18             +54h ECMWF/IFS

15 -France global 60 00 +102h; 06           +72h 4D-VAR; 6h -

90 -Antipode 12 +  84h; 18           +60h

9.5 289 x 289 60 00 +  54h; 06           +48h 3D-VAR ARPEGE

12 +  42h; 18           +36h

2.5 600 x 512 41 00,06,12,18             +30h 3D-VAR ALADIN- France

8 349 x 309 49 00 +  54h; 06           +48h 3D-VAR ARPEGE

12 +  48h; 18           +36h

Poland ALADIN 13.5 169 x 169 31 00/12                      +54h none ARPEGE

Portugal ALADIN 12.7 85 x 96 31 00/12                      +48h none ARPEGE

10 144 x 144 41 00 + 78h; 06            +48h none ARPEGE

12 + 66h; 18            +48h

9 309 x 277 37 00/06/12                 +72h ARPEGE

18                          +60h

9.6 258 x 244 43 00/12                     +72h none ARPEGE

06                          +60h

18                          +48h

Finland

Ireland HIRLAM

Norway

Austria

Denmark HIRLAM

Estonia HIRLAM

Spain HIRLAM

Belgium ALADIN

ALADIN

Sweden HIRLAM

Czech Rep. ALADIN surface OI + upper-air 
digital filter blending

ARPEGE

ALADIN-       
France

Hungary ALADIN

AROME-       
France

France

Romania ALADIN

Slovakia ALADIN upper-air digital filter 
blending

Slovenia ALADIN
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At the moment most countries run their models for overlapping European areas at 12-7 km grid 
resolution. In the next few years they will move towards 4-1 km grid resolution and therefore will not 
run an intermediate nested European grid area anymore. They plan to directly nest their very high 
resolution models, which then will cover only the national area, into a global model at 25km or less. 
For very high resolution requirements of a European wide SRNWP coverage a need arises for close 
cooperation and exchange of NWP products. These recent developments and plans in SRNWP 
limited area modelling in Europe have been discussed at the SRNWP/EWGLAM meeting 28th 
September - 1st October 2009 in Athens. There is a web page showing at least the agenda 
(http://lunar.hnms.gr/content/agenda.htm). There are already operational suits running at very high 
resolution in most of the European weather services. Figure 29 shows some examples of model 
domains: 
 

Country Model Mesh size 
(km)

Number of 
gridpoints

Number of 
levels

Initial times & Forecast 
ranges (h)

Type of data 
assimilation

Model providing 
LBC data

Bosnia-Herzegovina HRM 14 161 x 161 40 00/12                      +72h none GME

Bulgaria HRM 14   97 x   73 40 00/12                      +72h none GME

40 global 40 00/12                    +174h 3D-VAR, 3h -

06/18                      +48h

7 665 x 657 40 00/12                      +72h Nudging GME

06/18                      +48h

2.8 421 x 461 50 00/03/06/ Nudging COSMO-EU

09/…/18/21             +21h

Greece COSMO-GR 7 649 x 393 35 00/12                      +72h Nudging ECMWF/IFS

EURO-HRM 14 769 x 513 40 00/03/.../21             +18h 3D-VAR fgat ECMWF/IFS

COSMO-ME 7 641 x 401 40 00/12                      +72h 3D-VAR (interp) ECMWF/IFS

COSMO-IT 2.8 518 x 684 50 00                          +36h Nudging COSMO-ME

COSMO-I7 7 297 x 313 40 00/12                     +72h Nudging ECMWF/IFS

COSMO-I2 2.8 447 x 532 45 00                          +48h COSMO-I7 COSMO-I7

14 193 x 161 35 00/12                      +78h none GME

06/18                      +48h

HRM 14  81 x   73 20 00 +78h;             12 +48h none GME

14  81 x   73 35 00/12                      +78h none GME

7 161 x 145 40 00                          +54h none GME

COSMO-7 6.6 393 x 338 60 00/12                      +72h Nudging ECMWF/IFS

COSMO-2 2.2 520 x 350 60 00/12                      +72h Nudging COSMO-7

ETA 16 245 x 305 32 00/12                    +120h none GME

WRF-NMM 10   92 x 118 38 00/12                      +48h none ECMWF/IFS

MM5 (D1) 21   94 x 155 32 00/06/12/18             +48h none ECMWF/IFS

MM5 (D2) 7 136 x 259 32 00/06/12/18             +48h none MM5 (D1)

MM5 (D3)     2.3   91 x 196 32 00/06/12/18             +24h none MM5 (D2)

UM 40 global 50 00/12                    +144h 4D-VAR -

06/18                      +48h

UM (NAE) 12 600 x 360 38 00/06/12/18             +48h 4D-VAR UM (Global)

UM (UK4) 4 360 x 288 70 03/09/15/21             +36h 3D-VAR UM (NAE)

Switzerland

Italy 

Germany GME

COSMO-EU

COSMO-DE

Poland COSMO

Romania

COSMO-RO

Serbia

Turkey

United Kingdom
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Figure 30: Very high high resolution model domains from left to right: AROME 
(Meteo France, 41 vertical layers), COSMO-DE (DWD, 50 vertical layers), UM-4km 
(grey shaded area, UK Met Office, 70 vertical layers). 

 
 
3.1.3 MAP D-PHASE 
 
MAP D-PHASE stands for “Demonstration of Probabilistic Hydrological and Atmospheric Simulation of 
flood Events in the alpine region” within the Mesoscale Alpine Programme (MAP) and is a Forecast 
Demonstration Project (FDP) of the WWRP (World Weather Research Programme of WMO). For 
more information see http://www.map.meteoswiss.ch/map-doc/dphase/dphase_info.htm. It aims at 
demonstrating the ability of forecasting heavy precipitation and related flooding events in the Alpine 
region. The D-PHASE operations period has been from 1 June to 30 November 2007 and included the 
entire forecasting chain ranging from limited-area ensemble forecasting to high-resolution atmospheric 
modelling on the km-scale. Even though the focus of MAP D-Phase was on precipitation the model 
forecast data from the operations period in 2007 also includes wind at 10m height and at model levels. 
Especially the wind fields from the very high resolution models COSMO-2 of Meteo Swiss, COSMO-
DE of DWD and AROME of Meteo France can be downloaded from the D-PHASE data archive for 
research purposes (http://cera-www.dkrz.de/WDCC/ui/Index.jsp). Table 3 shows the variables stored 
at model levels and Figure 31 outlines the D-PHASE domain. 
 

 
Figure 31: Map of the Alps (color shading) with the outlines of the model domains of 
some of the high-resolution atmospheric D-PHASE numerical weather forecasting 
models. The bold red rhomb depicts the D-PHASE domain. 
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Table 3: Variables on model levels available from the D-PHASE archive.  

Variable 
 

output time 
steps 

Variable 
number 

Table 
number dataset 

Temperature (K) 1h 011 002 MTPQ 
Pressure  (Pa) 1h 001 002 MTPQ 
U-velocity (m/s) 1h 033 002 MUVW 
V-velocity (m/s) 1h 034 002 MUVW 
W-velocity (m/s) 15 min 040 002 MUVW 

 
 
3.2 Improvements in NWP and meso-scale modelling 
Möhrlen has looked at the resolution needed for successful application of NWP forecasting. In a study 
with the Danish HIRLAM model for one site in Ireland [126

In different runs with horizontal model resolutions of 30 km, 15 km, 5 km and 1.4 km for two months in 
January 2001, the most common statistical accuracy measures (MAE, RMSE, correlation etc) did 
improve only slightly with higher resolution. However, peak wind speeds were closer to the measured 
values for the high-resolution forecasts. For the higher resolution forecasts, the best model layers 
were those closest to the ground. For the errors, she points out that phase errors (the timing of the 
frontal system) has a much larger influence on the error scores (and eventual payments) than 
amplitude errors. As one possible remedy, she proposes to use free-standing turbine data as input for 
the NWP, thereby increasing the observational meteorological network.  

] she points out the reasons why NWP 
models are delivering inadequate accuracy of surface wind speeds. Amongst other things, these were: 
so far, no customers made it necessary to increase the accuracy of surface winds, since for the 
existing ones the accuracy was good enough. The topography resolution is not good enough to 
account eg for tunnel effects in valleys. Accurate predictions require high resolution models covering a 
large area. However, running both is numerically very expensive. In order to improve on the state of 
things, she calculated the power directly inside the NWP model. This had the advantage that "major 
physical properties like direction dependent roughness, actual density, and stratification of the 
atmospheric boundary layer can be used in the calculations."  

 
A similar point is made by Rife and Davis [127

Also for hurricanes Davis et al. [

]. They compared two otherwise identical model setups 
with horizontal resolution of 30 and 3.3km, respectively, for wind speed variations at and near the 
White Sands Missile Range in New Mexico (US). “The authors hypothesize that the additional detail 
and structure provided by high resolution becomes a ‘liability’ when the forecasts are scored by 
traditional verification metrics, because such metrics sharply penalize forecasts with small temporal or 
spatial errors of predicted features.” Therefore, they use three alternative skill scores, namely (in order 
of tolerance of timing errors) anomaly correlation, object-based verification and variance anomalies. 
“The largest improvement of the fine-grid forecasts was in the cross-mountain component.” In general, 
the higher resolution forecasts exhibited more skill than their coarser counterparts. 

128

 

] find that 1.33km grid spacing improves the results for ”Intensity 
(maximum wind) and rapid intensification, as well as wind radii” over 4km horizontal resolution, using 
the Advanced Research Hurricane version of WRF. 

In a follow-up paper on HIRLAM in Ireland [129

For the same set-up, Jørgensen et al [

], Möhrlen shows the difference between the usual 
one-hour average wind speed and the instantaneous wind speeds. She concludes that is important to 
calculate the power within the model itself, to make use of its significantly shorter time step. (The 
difference comes of course because the energy in the wind is proportional to the cube of the wind 
speed, and does not depend linearly on it.)  

130] make a number of interesting points on the coupling of a 
NWP model to wind power forecasts. Examining 25 especially bad forecasted days from 15 months for 
the Western Danish TSO Eltra (now part of Energinet.dk), he found that in all cases the error came 
from the NWP model and not from the WPPT upscaling. Here too he found that using higher 
resolution in HIRLAM, the scores do not improve substantially, indicating that level errors are smaller 
and gradients sharper in the higher resolution. This leads to higher error measures for phase errors. 



ANEMOS.plus The State-Of-The-Art in Short-Term Prediction of Wind PowerA Literature Overview, 2nd Edition 

DELIVERABLE D-1.2 2011-01-30   38 

On the weather dependence of the errors, he writes: "The more steady the flow is and the longer the 
controlling low pressure is towards the north, the better the quality of the forecast." He also notes on 
the roughness (usually in NWP models just one value per grid box): "Most turbines are positioned 
such that the local roughness is lower than the average roughness in the corresponding NWP model 
grid box. This is at least true for the prevailing wind direction [...]. Thus, a NWP model will in average 
have a negative wind bias where turbines are installed unless direction dependent roughness is 
used."  
In Jørgensen’s and Möhrlen’s conference proceedings from 2001 to 2002 they reported about wind 
power prediction using the HIRLAM Model: 
In [131] Möhrlen et al. describe the “Irish Study”, where HIRPOM was implemented into HIRLAM to be 
run in prognostic and diagnostic mode with the aim of finding the most efficient resolution for wind 
energy forecasting in complex terrain. Ireland has Europe’s best wind resources and intends to use 
them. So the overall purpose of the Irish study was to surpass the island’s own target of 33 % of 
renewable energy by 2020. The study showed that it is actually possible to generate 42 % of Ireland’s 
electricity from renewable energy. The Irish Study was one of the biggest numerical experiments 
carried out in the wind energy domain at the time. For the actual forecasting, in [132

Jørgensen et al [

] they argued that 
high-resolution forecasting (down to 1.4 km) also need high-resolution input databases for orography 
and roughness, and that due to the limited possibilities of data transfer (now a less relevant point) the 
power calculation should happen directly in the weather model. 

133

It should be noted that the company WEPROG does not use HIRLAM or HIRPOM, but their own 
MSEPS [

] also found that coupling HIRLAM with a wave model and HIRPOM improves the 
forecasts over sea and also over land 100km from the cost. For the North Sea coastline they found 
2.5% improvement, further out in the North Sea they expect 5%.   

134 6.2]. See chapter  for literature regarding this. 
 
A new approach is described by Jørgensen et al. [135]: they integrated the power prediction module 
within the NWP itself. They call it HIRPOM (HIRlam POwer prediction Model), also described by 
Möhrlen [136

126

]. She used a simplified power conversion module using standard power curves from 
wind turbine manufactures which was integrated into the NWP model. She also found through 
experiments with deterministic forecasts that increasing the horizontal resolution did not reduce the 
forecast errors. So using the same computational resources more economic benefit could be gained 
generating ensemble forecasts and derive uncertainty, the latter being as important as the wind speed 
and power itself. Jørgensen and Möhrlen therefore developed a 50-member Multi-Scheme Ensemble 
Prediction System (MSEPS) (more recently, WEPROG is running the system with 75 members) with 
an implicit forward-backward stepping algorithm (pmt-filter) to compute an uncertainty estimate for the 
forecasts [ ]. 
 
Sood et al. [137

 

] used WRF on a 3km resolution grid over the German part of the North Sea. They 
found that stable and unstable conditions were less well forecasted than neutral conditions.  

Vitec AB from Sweden worked on a model based on meteorological forecasts from the Swedish 
Meteorological and Hydrological Institute SMHI. Unpublished [138] - there is just an image in Söder 
[139
 

], citing H. Törnevik, who used to work at SMHI. 

Martin et al. [140] started to develop a prediction tool for the rather special case of Tarifa/Spain. Due 
to the unique situation of the wind farms at the Strait of Gibraltar, they could predict the power output 
from pressure differences between the measurements at Jerez and Malaga airports (west and east of 
Gibraltar), with the additional use of the Spanish HIRLAM. However, since the utilities felt at that time 
that 48 hours of forecasts would not be useful enough, the project was stopped half-way through 
[141]. On her own, Palomares and de Castro [142

 

] worked on the prediction using Perfect Prognosis 
to connect the too coarse fields of the 50-km resolution ECMWF global reanalysis model to the local 
flow at the strait, with quite reasonable results considering that the ECMWF global model did not even 
have a strait there.  

Barstad [143] used a library of pre-calculated meso-scale model results to downscale the wind from 
the large scale weather situation to the actual site in Nord-Trøndelag county, Norway. The 
classification of the overall weather was derived from NCEP/NCAR Reanalysis data [144]. For the 32 
cases found, MM5 was run to transform the large-scale flow to the wind at the actual (very complex) 

http://www.mmm.ucar.edu/mm5/mm5-home.html�
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site. This approach was used together with the reanalysis data to determine the resource in the 
vicinity, and was also used in conjunction with the HIRLAM system of the Norwegian Meteorological 
Institute to yield short-term forecasts. Berge [145] presented the whole system at a workshop in 
Norrköping in 2002. A larger report [146] additionally compares the performance of MM5 with results 
from the CFD model 3DWind. HIRLAM was run on a horizontal resolution of 10 km, MM5 on 1 km and 
3DWind with a resolution varying from 30 m to 500 m. To compare these models, a statistical model 
has been developed. Bremnes [147

 

] reported during the Norrköping workshop on the use of 
probabilistic forecasts, to yield the uncertainty of a forecast. His approach was to transform the 
forecasts according to the error distribution, standardise the centred forecast errors using the variance 
estimate, and retransform the wind speed. This effectively gives a direct estimate of the frequencies, 
or quantiles, of the resulting forecast. The larger report shows that the predicted frequencies actually 
are fairly reliable (ie, the 95% fractile, defined as a 95% probability that the power production will be 
below this value, was reached ca. 95% of the time). The best selection of explanatory variables based 
on HIRLAM10 was to use the wind speed at 10 m a.g.l., the wind direction, the wind speed increase 
and the time of day/horizon. One result of the comparison of the physical models was that despite the 
fact that the finer models did present more details of the forecasts, they were always fed with the initial 
and boundary conditions from the coarser HIRLAM model, and therefore were bound to have the 
same temporal development as the larger model. Also, the improvements in the details added by the 
mesoscale model and the CFD model did not show up in the error scores for a horizon of more than 
20 hours. As a side note, the model speed-ups from MM5 and WAsP were compared, showing that in 
the highly complex terrain of Norway, MM5 (on 1 km resolution) tended to underpredict the speed-up 
effects by around 20%.  

Enomoto et al. [148

Murakami et al. [

] used the LOCALS model (Local Circulation Assessment and Prediction System) 
to forecast the power production of the TAPPI wind farm in Aomori Prefecture, Japan. Despite using 
the model with a 500-m grid, the result is still an RMSE of 15% of the installed capacity. Their results 
indicate that the significant differences in turbulence intensity between the turbines are not modelled 
correctly. 

149

Hashimoto et al. [

] developed a numerical prediction model to obtain useful data for selecting 
suitable sites for windmill planting in Japan. They call it LAWEPS (Local Area Wind Energy Prediction 
System), and include computational fluid dynamics (CFD) models for meteorological phenomena as 
well as a five-stage nesting method. 

150

 

] used WRF in conjunction with the local wind model NuWiCC. They found that 
every additional modelling step improved the accuracy. They also found that NuWiCC was able to 
express the differences between wind speeds at each turbine. 

Yamaguchi et al. [151

 

] actually managed to reach nearly the same performance as a 1km resolution 
RAMS downscaling of the 20km resolution Japan Meteorological Agency met model with a simple 
transfer coefficient method. Using an ARXM (Auto-Regressive with eXogenous input and Multi-
timescale parameter) with the operational condition of the wind farm as exogenous parameter, they 
even exceeded the performance of the RAMS downscaling.  

GEO mbh and GKSS [152

Coppin and Katzfey [

] are currently developing the non-hydrostatic meso-scale model 
GEOFFREY (GESIMA-based Optimisation of Forecasts For Renewable Energy Yield). The model is 
going to be driven by the medium-range forecast of a private weather forecaster. 

376] from CSIRO in Australia developed the CFS (CSIRO Forecasting System). 
The main feature is the use of the hydrostatic meso-scale model C-CAM (Conformal Cubic 
Atmospheric Model), driven by the US AVN. For a model not employing MOS, the initial results of 
between 15 and 30% NRMSE are a reasonable starting point. 
The Meteorological Service of Canada developed a Simulation Toolkit [153

 

] called WEST (Wind 
Energy Simulation Toolkit). It can look forward up to three days (with the meso-scale model MC2) and 
backward (through the reanalyses of MC2) in time to generate a wind atlas for any location in Canada. 
They claim to also have modelled the wind power potential for whole Africa. 

Tammelin [154] reported for the Finnish case that the Finnish Meteorological Institute is working on 
wind power forecasts, using their version of the HIRLAM model plus a number of smaller scale models 
to scale the wind speed down to the surface. An additional problem appearing in Finland is the 
difference in power curve due to low temperatures and icing.  

http://met.no/english/r_and_d_activities/method/num_mod/hirlam.html�
http://met.no/english/r_and_d_activities/method/num_mod/hirlam.html�
http://www.vindteknikk.no/kvt/kvt.htm�
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Dierer et al. [155

 

] investigated the use of MM5 for wind energy purposes, not necessarily just with 
short-term forecasting in mind. They found no big differences in overall performance according to 
choice of planetary boundary layer schemes, though the ETA and Blackadar scheme seemed 
generally quite good. An increase in horizontal resolution from 10km to 1km did not bring about large 
improvements. “This is not an expected result, especially in orographically structured terrain, but it 
implies that the quality of the modelled wind profile is limited by other factors than the horizontal 
resolution, for instance the forcing data.” 

A large effort to the aim of meteorological forecasts for wind energy purposes has also been made by 
the original ANEMOS project. A long report [156

 

] details some work on especially downscaling 
techniques with microscale, mesoscale and CFD models. The best parameterisation for MM5 was 
found to be MRF, although it did not lead the competition at every forecast horizon and case study. If 
possible from a computational point of view, two-way nesting between domains is clearly preferred. 
While one group using mostly physical modelling reported increased accuracy down to two kilometre 
grid spacing, another one using an advanced statistical model claimed no improvement when going 
from 9 to 3 km grid spacing. This is probably due to the fact that the forecasted time series become 
more “realistic” when increasing horizontal resolution, in the sense that the ups and downs of the time 
series have a similar amplitude to the original series in the high frequency domain. However, this 
means a higher potential for phase errors, so for the usual RMS error or MAE the error goes up. 
Increasing the horizontal resolution beyond the resolution of the terrain database is fairly useless. On 
the other hand, increasing the vertical resolution in the lowest, say, 200m of the atmosphere improved 
the results in all cases. The report closed with the following recommendations: “If you have a site in 
complex terrain, where you even after using an advanced MOS are not happy with the forecasts, then 
try to use higher resolution modelling. In many cases and with a large number of approaches, the 
models can improve the NWP results. When setting up a model yourself, make sure to use the best 
terrain DB available (e.g. SRTM data), and try to get good NWP input data. Set up the model to have 
good vertical resolution, and reasonable horizontal resolution. Find out for yourself what “reasonable” 
means in this context. Use a MOS. Use insights gleaned from high-resolution modelling to decide 
which parameters to employ in the MOS. In any case, setting up a model from scratch will take a long 
time before one is familiar with the model and its quirks, so do not plan on having a solution up and 
running immediately.” 

For a real-time implementation of WRF (the successor of MM5) at Risø-DTU, Hahmann and Pena 
[157

For the same set-up, Draxl et al. set up a data assimilation system (WRFDA, 3DVAR) and performed 
initial tests. They investigated which model parametrisations would best capture wind conditions in the 
vicinity of the Horns Rev wind farm, and evaluated different model runs of the WRF model with 7 
different boundary layer schemes [

] reported and described preliminary verification results for the modelling system using surface 
observations and tall mast observations from Denmark. “In general, below 80-100m WRF 
overestimates wind and underestimates it above this level.” 

158

The data assimilation system was then used to assimilate winds measured at the nacelle of the wind 
turbines at Horns Rev, to improve the mesoscale wind forecast for that wind farm [

]. The main findings are that the YSU-scheme tends most of all 
to make the profiles neutral also when stable conditions were observed.  

159

 

]. Nacelle winds 
are a new data set and are not used so far for common assimilation systems. The data assimilation 
experiments included the nudging technique and 3DVAR. The main findings here are that using the 
nudging technique the forecast could be improved for up to 2 hours, with 3DVAR much longer. 

An interesting option for dedicated data collection for assimilation in a meso-scale model has been 
presented by Ágústsson et al. [160, 161

 

]: they use the Small Unmanned Meteorological Observer 
SUMO, a model airplane of 580g total weight, as a “recoverable radiosonde” for ad-hoc observations 
in the atmosphere, and assimilate the run in WRF. For the wind flow over the Eyjafjalla volcano in 
Iceland, they find a “major difference in flow pattern extending far above mountain top level.” 

Badger et al. [162] discussed the limitations of mesoscale modelling in the context of wind energy 
resource mapping, and described a post-processing procedure developed at Risø-DTU where output 
from mesoscale models was linked to microscale modelling, such that correct verification of the 
models could be performed, and so that the application of mesocale models could be extended for 
wind resource assessment, analysis of wind conditions or short-term predictions. As an example, 
generalized winds for a specific storm event were calculated. 
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3.3 Ensemble NWP systems 
 
TIGGE, the THORPEX Interactive Grand Global Ensemble, is a key component of the THORPEX 
World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 
week high-impact weather forecasts. Table 4 lists the global ensemble systems that exist and 
contribute to the TIGGE database. For references of the different systems see [163, 164, 165, 166, 
167, 168, 169, 170, 171

 

]. The data can be accessed via three servers in Europe (http://tigge-
portal.ecmwf.int/), America (http://tigge.ucar.edu/) and Asia (http://wisportal.cma.gov.cn/tigge/). The 
forecasts are available for research purposes with a time delay of 48h. In 2010 the ECMWF-EPS 
resolutions will increase from TL399/TL255 to TL639/TL319 respectively. 

Table 4: Global ensembles contributing to the TIGGE database (source: ECMWF 
Users Meeting, 11 June 2008 – Roberto Buizza: TIGGE: comparison and combination 
of ensembles) 

 
 

Table 5: EUMETNET-SRNWP overview of operational Ensemble Prediction Systems 
(EPS) in Europe as of July 2009 compiled by Detlev Majewski (Deutscher 
Wetterdienst, Germany) 

 
 
 
In Europe seven operational limited-area ensembles are running at the large meteorological centres 
(and the one by WEPROG, see section 6.2). Table 5 gives an overview. Some of these systems will 
be stored in a central database within the TIGGE-LAM project, the Limited Area Model component of 
TIGGE (see http://www.smr.arpa.emr.it/tiggelam/). 
 
In addition to the operational LAM-EPS systems the German weather service runs the SRNWP-PEPS 
under the EUMETNET SRNWP program. The SRNWP-PEPS is an experimental system that 
generates probabilistic forecasts from a multi-model Poor mans Ensemble Prediction System. The 
SRNWP-PEPS is a combination of the operational limited area forecasts of the European weather 
services. The latest configurations of the contributing models can be seen from Table 2. Error! 

Country Model Mesh size 
(km)

Number of 
gridpoints

Number of 
levels

Initial times & 
Forecast ranges (h)

Type of data 
assimilation

Model providing 
LBC data

Italy (for COSMO) COSMO-LEPS 10 306 x 258 32 12                  +120h ECMWF EPS ECMWF EPS

Austria (for ALADIN/LACE) ALADIN-LAEF 18 324 x 225 37 00/12               +60h Downscaling of 
ECMWF SV 

ECMWF EPS

Norway LAMEPS 12 232 x 371 60 06/18               +60h SV initial perturbation ECMWF TEPS

MOGREPS-G 90 288x217 38 00/12               +72h Local ETKF -

MOGREPS-R 24 300x180 38 06/18               +54h Regional ETKF MOGREPS-G

23 -France global 55 18                    +60h SV initial perturbation -

133 -Antipode

Hungary (for ALADIN) ALADIN 12 229 x 205 46 18                    +60h SV initial perturbation in 
PEARP

PEARP

PEARP (ARPEGE 
EPS)

France

United Kingdom
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Reference source not found. shows the patchwork that is a result of the overlapping of the different 
model domains. 

 
Figure 32: Number of forecasts available at each grid point for the SRNWP Poor 
mans Ensemble Prediction System (PEPS). The patchwork is a result of the 
different model domains that are used for the operational forecast products of the 
European weather services. 

 
3.4 Ensemble forecast applications for wind prediction 
The EU FP 6 PREVIEW Windstorms project (see www.preview-windstorms.eu) has delivered a new 
Windstorm warning and forecast service for much of Europe, particularly in the north and west. Alerts 
are generated for a set of 205 specific locations. The sites were chosen as ones for which verifying 
observations were routinely and reliably available and which are well distributed over Europe in 
locations of highest vulnerability (e.g. close to big cities). Figure 33 shows the location of the 
observational sites and illustrates the Windstorms service. 
 
One of the main aims of the Windstorms project was to implement a pre-operational multi-model 
ensemble forecasting system, and to assess its performance. The Windstorms project used forecasts 
from a combination of the MOGREPS, PEARP, SRNWP-PEPS and LAMEPS systems for the short 
range and the ECMWF EPS and the COSMO-LEPS systems for the medium range. To create the 
combined ensemble forecast for days 1-2 and days 3-5 the data from each of the ensembles is pooled 
into one super-ensemble with each individual ensemble having the same weighting. 
 
The Windstorm forecast system uses forecasts of both mean windspeed and gust speed. Estimates of 
forecast gust speeds are generated using an algorithm provided by project partner Meteo-France and 
based on boundary layer turbulence theory. This method is well-suited to strong-wind situations, but it 
should be noted that it is not suitable for predicting strong gusts due to convective storms. This 
algorithm has been implemented in each of the ensemble producing centres, and gust forecasts are 
provided to the database for each site in the same way as the mean windspeed forecasts. 
 

 
Table 6: Reliability and ROC area scores for combined ensembles for 1-2 day 
forecasts of windspeeds exceeding 10, 15 and 20 ms-1 including and excluding the 

 

Reliability Scores ROC Area Scores Combined 
Ensemble 10 ms-1 15 ms-1 20 ms-1 10 ms-1 15 ms-1 20 ms-1 

Including GE 0.00361 0.00133 0.00040 0.881 0.811 0.684 

Excluding GE 0.00484 0.00159 0.00044 0.869 0.797 0.662 

 

http://www.preview-windstorms.eu/�
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GE ensemble. (Note the figures including GE are identical to those presented in Table 
V.) In each column, the better score is highlighted in bold. 

a)     b)   

Figure 33: Illustrations of the Windstorms service. (a) Example of a traffic-light 
map showing the risk of a windstorm event in the next two days at locations around 
Europe. (b) Example of a meteogram giving forecasts of wind speed and gust-speeds. 

 
It was shown during the verification in Windstorms [172

Table 6

] that the SRNWP-PEPS ensemble (GE) 
performed notably differently from the other individual ensembles, and had the lowest individual 
reliability and Brier scores, although it did have greater resolution. This is due to the fact that it is a 
poor man’s ensemble combining individual deterministic forecasts which are generated by the most 
sophisticated models running operationally at the weather services in Europe. Therefore, the individual 
forecasts of the SRNWP-PEPS might have greater skill than those of the other ensemble systems, but 
it does not necessarily produce a good probabilistic forecast.  shows that excluding the 
SRNWP-PEPS from the combined ensemble gives lower scores for the reliability as well as the 
resolution (ROC-area). This does indicate that having ensemble diversity in the combined ensemble is 
beneficial. 
 
3.5 Ensemble Kalman Filtering 
The Kalman filter methods have gained popularity for data assimilation tasks in recent years, because 
they account for the dynamic propagation of model errors. Anderson and Anderson [173

This limitation of the Kalman filter technique (KF) in meteorological context was however found to not 
be a limitation in wind power context, because there, the area of observational distribution is also 
rather small, even if the area spans over an entire country. Therefore, Möhrlen and Jørgensen [

] found an 
ensemble Kalman filter methodology to combine data assimilation with generation of ensembles to 
also account for the uncertainty in the forecasting step. However, the method only worked well in low-
order systems and could not be applied to large atmospheric models. 

174

173

] 
found that only a type of ensemble Kalman filter techniques (EnKF) can be adopted for wind power 
purposes. As described by Anderson and Anderson [ ] and Houtekamer and Mitchell [175

In the EnKF, this procedure is approximated by using an ensemble of short-range forecasts, where the 
forecast error covariance is directly computed from the ensemble when they are needed for the data 
assimilation. Meng and Zhang [

], the 
standard KF propagates the error covariance from one assimilation step to the next, which is 
computationally expensive.  

176

 

] found that it was beneficial to use a multi-scheme ensemble 
approach rather than a single-scheme approach, because it does not require such a large ensemble 
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size to cover the uncertainties. They built an ensemble based on a Penn-State University WRF model 
kernel and different parameterisation schemes.  
Möhrlen and Jørgensen [258] followed the same strategy and used an ensemble that is independent 
of the data assimilation system and also built upon a multi-scheme approach, their in-house MSEPS. 
Their MSEPS system has 75 ensemble members with various different parameterisation schemes for 
the advection and the fast physical processes such as condensation and vertical diffusion. The 
authors developed the Ensemble Kalman Filter as part of the HREnsembleHR project, funded by the 
Danish PSO programme 2006-2009 (see www.hrensemble.net) and called it an “inverted Kalman 
Filter technique” (iEnKF). It was introduced it in 2009 [174] and became an operational short-term 
forecasting approach rolled out by WEPROG at the beginning of 2010 in Germany, Denmark, Ireland 
and Canada. The approach is a generalised multi-dimensional state estimate methodology, which is 
capable of translating information between any kind of variables, that can be forecasted reasonably 
well by an ensemble prediction system like the MSEPS. The effect of each measurement is computed 
in the non-dimensional ensemble percentile space and the time dependency is determined via the 
forecast covariance of the ensemble. 
The strength of the iEnKF approach is the capability of combining different types of measurements. In 
this way meteorological SYNOP data, recorded data from wind farms and other power data can be 
combined to a consistent forecast. 
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4. Short-term prediction models  
The previous chapter dealt with the meteorological input to the short-term prediction model proper. 
Here, the emphasis is on operational models, although a number of pure research models are 
included. 
 
 
Probably the earliest model was developed by McCarthy [177

 

] for the Central California Wind 
Resource Area. It was run in the summers of 1985-87 on a HP 41CX programmable calculator, using 
meteorological observations and local upper air observations. The program was built around a 
climatological study of the site and had a forecast horizon of 24 hours. It forecast daily average wind 
speeds with better skill than either persistence or climatology alone.  

In 1990, Landberg [178 (with Troen), 179] developed a short-term prediction model, now known as 
Prediktor, based on physical reasoning similar to the methodology developed for the European Wind 
Atlas [180

The site assessment regarding roughness is done as input for WAsP. There, either a roughness rose 
or a roughness map is needed. From this, WAsP determines an average roughness at hub height. 
This is the roughness used in the geostrophic drag law or the logarithmic profile.

]. The idea is to use the wind speed and direction from a NWP, then transform this wind to 
the local site, then to use the power curve and finally to modify this with the park efficiency. Note that 
the statistical improvement module MOS can either be applied before the transformation to the local 
wind, before the transformation to power, or at the end of the model chain to operate on the power 
itself. A combination of all these is also possible. He found that for the MOS to converge, about 4 
months worth of data were needed (which might not be available when setting up the model for a new 
customer). Landberg used the Danish or Risø version for all the parts in the model: the HIRLAM model 
of the DMI as NWP input, the WAsP model from Risø to convert the wind to the local conditions and 
the Risø PARK model to account for the lower output in a wind park due to wake effects. Two general 
possibilities for the transformation of the HIRLAM wind to the local conditions exist: the wind could be 
from one of the higher levels in the atmosphere, and hence be treated as a geostrophic wind, or the 
wind could be the NWPs offering for the wind in 10m a.g.l. Usually this wind will not be very accurately 
tailored to the local conditions, but will be a rather general wind over an average roughness 
representative for the area modelled at the grid point. In the NWP, even orography on a scale smaller 
than the spatial resolution of the model is frequently parameterised as roughness. This point is less 
important now, with the advances in computing power since the inception of the model and the 
subsequently increased horizontal resolution. If the wind from the upper level is used, the procedure is 
as follows: from the geostrophic wind and the local roughness, the friction velocity u* is calculated 
using the geostrophic drag law. This is then used in the logarithmic height profile, again together with 
the local roughness. If the wind is already a wind from between 10m a.g.l. and hub height, then the 
logarithmic profile can be used directly.  

7 Only one WAsP 
correction matrix is used, which could be too little for a larger wind farm [181]. In his original work, 
Landberg and Watson [182] determined the ideal HIRLAM level to be modelling level 27, since this 
gave the best results. However, the DMI changed the operational HIRLAM model in June 1998, and 
Joensen et al. [183] found that after the change the 10m wind was much better than the winds from 
the higher levels. After the change, passing storm systems were also better predicted, only missing 
the level once for the 9 storms in 1998 and not missing the onset at all [184]. The model has also 
been used at ESB (Electricity Supply Board, Ireland) [185 314] and in Iowa [ ]. There, for predictions of 
the Nested Grid Model of the US National Weather Service, the use of MOS was essential. This was 
partly because the resolution of the Nested Grid Model was ca. 170km, and no local WAsP analysis of 
the site was available. Prediktor was also used in the generic SCADA system CleverFarm for 
maintenance scheduling [186
 

]. 

The Wind Power Prediction Tool (WPPT) has been developed by the Institute for Informatics and 
Mathematical Modelling (IMM) of the Technical University of Denmark. In 2006, the original developer 
Torben Skov Nielsen together with Henrik Madsen and Henrik Aalborg Nielsen founded the DTU spin-
off company Enfor, which now stands for all commercial activity with the model. WPPT has been 

                                                      
7 In Previento, the geostrophic profile is used in conjunction with the roughness used by the NWP, not 
the mesoscale roughness. 
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running operationally in the western part of Denmark since 1994, and in the eastern part since 1999. 
Initially, they used adaptive recursive least squares estimation with exponential forgetting in a multi-
step set-up to predict from 0.5 up to 36 hours ahead. However, due to the lack of quality in the results 
for the higher prediction horizons, the forecasts were only used operationally up to 12 hours ahead. In 
a later version, HIRLAM forecasts were added [187

Figure 34

], which allowed the range of useful forecasts to be 
extended to 39 hours ahead. A data-cleaning module was developed, as was an upscaling model (see 
eg ). This version has successfully operated at Elsam and other Danish utilities [188
WPPT is a modelling system for predicting wind power production for individual wind farms, for groups 
of wind farms or for a larger region. WPPT can be configured to take advantage of the following data: 

].  

      * On-line power production measurements for individual wind farms.         
      * Aggregated on-line power production measurements for larger areas. 
      * Off-line power production measurements for individual wind farms. 
      * Aggregated off-line power production measurements for larger areas. 
      * Numerical Weather Prediction (NWP) data covering individual wind farms. 
      * NWP data covering larger areas. 
      * Multiple NWP forecast providers. 
      * Scheduled availability and curtailment. 
The forecasts can be in the form of single point forecasts (forecasts of the expected value) or in the 
form of probabilistic forecasts where the entire distribution of the expected outcome is given. 
The complexity of the model structure employed by WPPT will depend on the available data. In order 
to illustrate the flexibility of WPPT, a complex installation for predicting the total wind power production 
in a larger region based on a combination of on-line measurements of power production from selected 
wind farms, power measurements for all wind turbines in the region and numerical weather predictions 
of wind speed and wind direction is presented here as an example.  
A central part of this system are the statistical models for short-term prediction of the wind power 
production in wind farms or areas. The modelling system combines traditional linear models with a 
specific but very general class of non-linear models - the conditional parametric models.  
For on-line applications it is advantageous to allow the function estimates to be modified as data 
become available. Furthermore, because the system may change slowly over time, observations 
should be down-weighted as they become older. For this reason a time-adaptive and recursive 
estimation method is applied. 
The time-adaptivity of the estimation is an important property as the total system consisting of a wind 
farm or area, íts surroundings and the numerical weather prediction (NWP) model itself will be subject 
to changes over time. This is caused by effects such as aging of the wind turbines, changes in the 
surrounding vegetation and maybe most importantly due to changes in the NWP models used by the 
weather service as well as changes in the population of wind turbines in the wind farm or area. 
Nielsen et al. [122] found a way to algorithmically optimise the tuning parameters for the time adaptive 
model, like forgetting factor and bandwidth. In the same work, they also improved the robustness of 
WPPT against suspicious data. 
Depending on the available data the WPPT modelling system employs a highly flexible modelling 
hierarchy for calculating predictions of the available wind power from wind turbines in a region. For a 
larger region this is typically done by separating the region into a number of sub-areas. Wind power 
predictions are then calculated for each sub-area and hereafter summarized to get a prediction for the 
total region. 
In the following an installation using on-line production data from a number of wind farms in a region 
(reference wind farms), off-line production data for the remaining wind turbines in the region and 
numerical weather predictions of wind speed and wind direction in the calculation of a total regional 
power prediction is outlined. The predictions cover a horizon corresponding to the prediction horizon of 
the numerical weather predictions - typical from 1 to 48 hours ahead in time. The time resolution of the 
predictions can be chosen freely but a reasonable choice for the longer prediction horizons is to use 
the same time resolution as available for the numerical weather predictions. 
The predictions for the total region are calculated for a number of reference wind farms using on-line 
measurements of power production as well as numerical weather predictions as input (see section 
‘The wind farm model’). The predictions from the reference wind farms in the region are summarized 
and hereafter up-scaled to get the prediction of power production of all wind turbines in region. This 
modelling chain takes advantage of the auto-correlation which is present in the power production for 
prediction horizons less than approximately 12-18 hours, but also of the smooth properties of the total 
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production as well as the fact that the numerical weather models perform well in predicting the 
weather patterns but less well in predicting the local weather at a particular wind farm. 
The power prediction for the region is here calculated directly by the up-scaling model but a larger 
region could be separated into a number of sub-areas each covered by a model chain as described 
above. The total power production will then be calculated as a sum of the predictions for the sub-
areas. 
 
IMM and Risø had started a more formal collaboration under the Zephyr name [189

 

]. Originally the 
name of a collaboration project with the target to unify the Prediktor and WPPT models, it ended up 
being the common header for joint activities, but is rarely used any more. 

A rather similar approach to Prediktor was developed at the University of Oldenburg [190]. They 
named it Previento [191]. They used the Deutschlandmodell [192] or later the Lokalmodell (LM) of the 
German Weather Service (DWD) as the NWP model. A good overview over the parameters and 
models influencing the result of a physical short-term forecasting system has been given by Mönnich 
[193

179
]. He found that the most important of the various submodels being used is the model for the 

atmospheric stability, although back in 1990, Landberg [ ] had found that the heat flux parameter of 
HIRLAM was not sufficiently accurate to improve the results (Badger [122] later built a pre-processor 
for the upscaling of 10m wind speeds improving the forecast especially in complex terrain (Alaiz)). 
Mönnich found also that the submodels for orography and roughness were not always able to improve 
the results. The use of MOS was deemed very useful. However, since the NWP model changed 
frequently, the use of a recursive technique was recommended. A large influence was found regarding 
the power curve. The theoretical power curve given by the manufacturer and the power curve found 
from data could be rather different. Actually, even the power curve estimated from data from different 
years could show strong differences. The latter might be due to a complete overhaul of the turbine. 
The largest influence on the error was deemed to come from the NWP model itself. In 2004, the two 
principal researchers behind Previento, Matthias Lange and Ulrich Focken, left the University to form 
energy & meteo systems, a company which had good success from the start and has now over 20 
employees. For their work on regional smoothing of forecasting error see chapter 5. Their work on the 
weather dependent combination of models is also published in [15] or in [61]. In essence, principal 
component analysis identifies between 5 and 8 different weather types, and the model parameters are 
optimised according to weather type. 
 
The current forecasting model of Oldenburg University is called Hugin [194

 

]. It employs NCEP and 
ECMWF forecasts. 

AMI Environmental (the former Applied Modeling Inc) [195

 

] provide a service not unlike Prediktor, 
except that their expertise is running a mesoscale model (MM5 or WRF). Instead of WAsP, they use 
the in-house Diagnostic Wind Model DWM, a mass-consistent model capable of resolution of 100m or 
better. When power data is available, an adaptive statistical model can be employed for bias removal. 

ARMINES and RAL have developed work on short-term wind power forecasting since 1993. Initially, 
short-term models for the next 6-10 hours were developed based on time series analysis to predict the 
output of wind farms in the frame of the LEMNOS project (JOU2-CT92-0053). The developed models 
were integrated in the EMS software developed by AMBER S.A and installed for on line operation in 
the island of Lemnos.  
Various approaches have been tested for wind power forecasting based on ARMA, neural networks of 
various types (backpropagation, RHONN etc), fuzzy neural networks, wavelet networks etc. From this 
benchmarking procedure, models based on fuzzy neural networks were found to outperform the other 
approaches [76,196,197
In the frame of the project CARE (

]. 
JOR-CT96-0119) [198], more advanced short-term models were 

developed for the wind farms installed in Crete. In the ongoing project MORE-CARE (ERK5-CT1999-
00019), ARMINES developed models for the power output of a wind park for the next 48/72 hours 
based on both on-line SCADA and Numerical Weather Predictions (meteorological forecasts). The 
developed forecasting system can generically accept as input different types of meteorological 
forecasts (ie Hirlam, Skiron etc.). 
The wind forecasting system of ARMINES integrates: 

http://www.energymeteo.de/�
http://dbs.cordis.lu/cordis-cgi/srchidadb?ACTION=D&SESSION=251782003-3-10&DOC=5&TBL=EN_PROJ&RCN=EP_RCN:4762&CALLER=EN_CORDIS�
http://dbs.cordis.lu/cordis-cgi/srchidadb?ACTION=D&SESSION=246522003-3-10&DOC=4&TBL=EN_PROJ&RCN=EP_RCN:37172&CALLER=PROJLINK�
http://www-cenerg.cma.fr/more-care�
http://dbs.cordis.lu/cordis-cgi/srchidadb?ACTION=D&SESSION=237752003-3-10&DOC=3&TBL=EN_PROJ&RCN=EP_RCN:51199&CALLER=EN_UNIFIEDSRCH�
http://dbs.cordis.lu/cordis-cgi/srchidadb?ACTION=D&SESSION=237752003-3-10&DOC=3&TBL=EN_PROJ&RCN=EP_RCN:51199&CALLER=EN_UNIFIEDSRCH�
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• short-term models based on the statistical time-series approach able to predict efficiently 
wind power for horizons up to 10 hours ahead. 

• longer-term models based on fuzzy neural networks able to predict the output of a wind farm 
up to 72 hours ahead. These models receive as input on-line SCADA data and numerical 
weather predictions [199

• combined forecasts: such forecasts are produced from intelligent weighting of short-term 
and long term forecasts for an optimal performance over the whole forecast horizon. 

]. 

The developed prediction system is integrated in the MORE-CARE EMS software and is installed for 
on-line operation in the power systems of Crete and Madeira [200]. A stand alone application of the 
wind forecasting module is configured for on-line operation in Ireland [201]. An evaluation of this 
application is presented in [202

For Ireland, they show that using a power curve derived from HIRLAM wind and measured power can 
improve the forecast RMSE by nearly 20% in comparison to using the manufacturers power curve 
[

]. The average reported error is in the order of 10% of the installed 
power. 

201].  
80 MW of wind power are installed on the island of Crete where the demand varies between 170-450 
MW throughout the year. Wind penetration reaches high levels. Furthermore, the fact that the network 
is an autonomous one, makes the use of wind power forecasting necessary for an economic and 
secure integration of wind farms in the grid. Currently, the MORE-CARE system [203

In Portugal, the MORE-CARE system is operated by EEM and provides forecasts for the production of 
the wind farms at the island of Madeira. The prediction modules provide forecasts for the short-term up 
to 8 hours ahead using on-line SCADA data as input. Moreover, MORE-CARE provides predictions for 
the run-of the river hydro installations of the island. 

] is installed and 
operated by PPC in Crete and provides wind power forecasts for all the wind farms for a horizon of 48 
hours ahead. These forecasts are based on numerical weather predictions provided by the SKIRON 
system, which is operated by IASA. On-line data are provided by the SCADA system of the island. 

 
The ISET (Institut für Solare Energieversorgungstechnik, now the main part of the Fraunhofer Institut 
für Windenergie und Energiesystemtechnik IWES) has since 2000 operatively worked with short-term 
forecasting, using the DWD model and neural networks. It came out of the German federal monitoring 
program WMEP (Wissenschaftliches Mess- und EvaluierungsProgramm) [204], where the growth of 
wind energy in Germany was to be monitored in detail. Their first customer was E.On, who initially 
lacked an overview of the current wind power production and therefore wanted a good tool for 
nowcasting [205
Ernst and Rohrig [

]. Then, their model was called Advanced Wind Power Prediction Tool AWPT. 
206] reported in Norrköping in 2002 on the latest developments of ISET's Wind 

Power Management System WPMS. They then predicted for 95% of all wind power in Germany. In 
some areas of German TSOs E.On Netz and Vattenfall Europe Transmission, wind power has 
exceeded 100% coverage at times. One additional problem in Germany is that the TSOs even lack the 
knowledge of the currently fed in wind power. In the case of E.On Netz, the ca 5 GW installed capacity 
are upscaled from now 50 representative wind farms with 1/3 of the total installed capacity (was: 16 
totalling 425 MW). Their input model was the Lokalmodell (always the actual model) of the DWD, 
which they then feed into an ANN. To improve on the LM, they tried out transforming the predicted 
wind to the location of wind farms using the numerical mesoscale atmospheric model KLIMM 
(KLImaModell Mainz), but dropped it again [207]. The LM is run twice daily with a horizontal resolution 
of 7 km, forecasting up to 48 hours ahead. The ANN also provides for an area power curve. The 
WPMS runs at E.On since 2001, at RWE since June 2003, for Vattenfall Europe since the end of 
2003, and in a variety of other places as well [208

 

]. A version for two hours horizon has been 
developed for National Windpower in the UK. For the E.On total area, they claim RMSE values of 
2,5% for 1h horizon (persistence would be 3,3%), 5,2% (7,3% for p.) at 3h, 6% (9% for p.) at 4h, and 
reach the error of a purely NWP based prognosis (7,5%) at 7h horizon. 

The Sustainable Energy Research Group (SERG) in University College Cork (UCC) has been 
researching and developing wind power forecasting methodologies based on ensemble forecasts in 
the years 2002-2006, see eg [209,210,211,212,213,214

6.2

]. An operational forecasting system was 
developed by the principle researchers in UCC and brought to life in 2004 by WEPROG (Weather and 
wind Energy PROGnosis), which was founded in 2003. Details regarding the ensemble approach will 
be discussed in the ensemble forecasting section (see chapter ). WEPROG's MSEPS system 
contains a 2-step power prediction module. In the first step a physical reference power is computed 
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and in a second step, the reference power is localised statistically and with the help of weather 
classes defined by the ensemble weather input. It is the first and only operational specific ensemble 
prediction system for wind power at present (2010), where up to 900 weather parameters are input to 
the power prediction (see eg.g. [43,44,215

 

]), and is operationally forecasting wind power on all 
continents, where there is wind power installed, except South America.  

eWind is an US-American model by TrueWind, Inc (now AWS TruePower) [216

220

]. Instead of using a 
once-and-for-all parameterisation for the local effects, like the Risø approach does with WAsP, they 
run the ForeWind numerical weather model as a meso-scale model using boundary conditions from a 
regional weather model. This way, more physical processes are captured, and the prediction can be 
tailored better to the local site. In the initial configuration of the eWind system, they used the MASS 
(Mesoscale Atmospheric Simulation System) model [ ]. Additional mesoscale models used were: 
ForeWind, MM5, WRF, COAMPS, workstation-ETA and OMEGA. To iron out the last systematic 
errors they use adaptive statistics, either a traditional multiple screening linear regression model, or a 
Bayesian neural network. Their forecast horizon is 48 hours. They published a 50% improvement in 
RMSE over persistence in the 12-36 hour range for 5 wind towers in Pennsylvania [217]. Their model 
is also used by SecondWind for integration into their SCADA system [218
The current iteration of eWind uses ARPS, MASS and WRF, fed by the global models GFS, GEM and 
ECMWF, to yield an ensemble of 9 different model runs [

].  

219

EWind, Prediktor and AMI’s WERF have been used concurrently in California and Texas [

]. For the average prediction of 6 wind 
farms in Europe, their “results reveal that the ensemble prediction outperforms the accuracy of [...] the 
MOS method applied to single NWP models, achieving between a 20 and 30 % of improvement during 
the first three days of prediction.” 

220]. Both 
are delivering forecasts for two large wind farm areas, 900 turbines (90 MW) in Altamont Pass and 111 
turbines (66.6 MW) at San Gorgognio Pass. The first results for an initial 28-day period are published 
in the reference. TrueWind reaches a MAE of 10.8% of the installed capacity for same day 
forecasting, and 11.7% for next day. Prediktor (using the ETA model run by NOAA of the US) 
achieved a MAE of 2.4 m/s for the 48-hour horizon, but was not yet fully optimised for this application. 
In the final report [221

Zack [

], MAEs in the range of 44-59% of mean production are encountered. “The 
reasons for the relatively high forecast errors in California are thought to be the complex terrain at the 
Altamont, Mountain View I & II, and Southwest Mesa wind project sites, the annual transitions back 
and forth between the high-wind speed and strong-diurnal character of the spring and summer 
seasons and the low-wind speed character of the fall and winter seasons at both sites, and 
observations that the ETA and AVN numerical weather prediction models used by Risoe and 
TrueWind each do a better job forecasting California weather under different synoptic conditions.”  An 
interesting approach here came from the University of California at Davis, which conducted a wind 
tunnel evaluation of a scale model of a portion of the Altamont Pass wind resource area. They tried to 
relate wind speeds at one meteorological tower in the farm with wind speeds at Livermore airport, and 
subsequently with forecasts for the airport, but concluded that the representativity of a single met mast 
for such a large area as the Altamont wind farms is too low. 

222

 

] of AWS TrueWind (now TruePower) presented their high resolution atmospheric model to 
operate in a rapid update cycle mode, called WEFRUC – Wind Energy Forecast Rapid Update Cycle. 
The model assimilates different types of data available in the local-area environment of a wind plant 
such as remotely sensed data, which is the starting point for a short-term simulation of the 
atmosphere. So, the atmospheric simulation produced by the physics based model is incrementally 
corrected through the use of the measured data as it evolves. Their update cycle is 2 hours.   

The strong wind energy growth in Spain led Red Eléctrica de España (the Spanish TSO) to have the 
Sipreólico tool developed by the University Carlos III of Madrid [223]. The tool is based on Spanish 
HIRLAM forecasts, taking into account hourly SCADA data from 80% of all Spanish wind turbines 
[224

2

]. These inputs are then used in adaptive non-parametric statistical models, together with different 
power curve models. There are 9 different models, depending on the availability of data: one that work 
along the lines of the models in section , not using NWP input at all. Three more include increasingly 
higher order terms of the forecasted wind speed, while a further three also take the forecast wind 
direction into account. The last two are combinations of the other ones, plus a non-parametric 
prediction of the diurnal cycle. These 9 models are recursively estimated with both a Recursive Least 
Squares (RLS) algorithm and a Kalman Filter. For the RLS algorithm, a novel approach is used to 
determine an adaptive forgetting factor based on the link between the influence of a new observation, 

http://www.nrlmry.navy.mil/projects/coamps/�
http://www.noaa.gov/�
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using Cook’s distance as a measure, and the probability that the parameters have changed. The 
results of these 18 models are then used in a forecast combination [225

Figure 27

], where the error term is 
based on exponentially weighted mean squared prediction error with a forgetting factor corresponding 
to a 24-h memory. The R2 for all of Spain is more than 0.6 for a 36-h horizon. The main problem of the 
Spanish case is the Spanish HIRLAM model in conjunction with the complex terrain. The resolution of 
HIRLAM is not enough to resolve the flow in many inland areas. The model itself works very well when 
driven by measured wind speeds instead of predicted ones (with R2 over 0.9 for the whole horizon, 
see also ).  
 
LocalPred and RegioPred [226] are a family of tools developed by Martí Perez (formerly CIEMAT, now 
CENER) et al. Originally, it involved adaptive optimisation of the NWP input based on principal 
component analysis, time series modelling, mesoscale modelling with MM5, and power curve 
modelling. They could show for a case of rather complex terrain near Zaragoza (Spain), that the 
resolution of HIRLAM was not good enough to resolve the local wind patterns [227]. The two HIRLAM 
models in Spain were at the time running on a 0.5°x0.5° and 0.2°x0.2° resolution. The use of WPPT 
as a statistical post-processor for the physical reasoning was deemed very useful in the early stages 
of the development [228].Successive research and development carried out at CENER [eg. 229

25

] have 
transformed LocalPred into a multi model wind power forecasting system. In its current form, an 
ensemble forecasting model takes MM5, Skiron and the ECMWF model as NWP inputs for learning 
machine techniques as cluster or support vector machines [ ]. The final prediction is offered by an 
adaptive model that combines all the individual inputs. 
 
GL Garrad Hassan [230

 

] has a forecasting model called GH Forecaster, based on NWP forecasts 
from the UK MetOffice. It uses "multi-input linear regression techniques" to convert from NWP to local 
wind speeds. For T+24h, they reach 35-60% improvement over persistence. 

3Tier Environmental Forecast Group [231

 

] works with a nested NWP and statistical techniques for the 
very short term in the Pacific Northwestern US. They show performance figures in line with most other 
groups in the field. 

Magnusson and Wern [232] coupled the Swedish HIRLAM to the commercial STAR-CD CFD model 
for a site in Gotland, Sweden, and concluded that due to the complexity of the terrain, small scale 
effects are important and “an increased accuracy of the wind prediction can be achieved”. However, 
they do not back that claim up with actual results of an evaluation. Later, Magnusson [233] spoke 
about wind forecasts for wind engineering purposes, protecting bridges and airports. Since the 
Swedish Meteorology and Hydrology Institute's HIRLAM model was not running in sufficient resolution 
for direct coupling into a CFD model (44 or 22 km), they used DYNAD as an intermediate tool. The 
CFD modelling is done on a scale of 25 m and yields turbulence levels as the main result.  
 
ECN [234
 

] has developed a forecasting system similar to Prediktor.  

Moreno et al. [22] presented a model developed by MeteoLógica. Since they focus on maintenance 
planning, a long horizon is more important than accuracy. Using ECMWF ensembles, they deliver a 
forecast for the mean wind six-hourly for a horizon up to 4 days, and a mean daily wind for the horizon 
from 5-10 days ahead. While the shorter horizons have a quite acceptable accuracy, the long horizons 
are just slightly better than climatology (calculated as a 30-day running mean from 2 years of data). A 
site in Galicia was easier to predict than a site in the Ebro valley, which is probably due to the larger 
influence of meso-scale effects in the latter. The use of this model allowed Ecotècnia to save 3-5% of 
the O&M crane budget for the two wind farms analysed.   
 
Moon et al. [235

 

] investigated Support Vector Machine techniques for wind energy analysis at 
WindLogics, using GFS and the US ETA model outputs, as one grid point or an ensemble of the four 
surrounding grid points. They showed that their approach performed better than persistence, 
especially over large forecast horizons. 

A consortium of Portuguese universities and research institutes [236] developed the EPREV tool and 
tested it at three wind farm sites in Portugal. MM5 was run as input to either a Wind Farm Power 
Curve model derived from WAsP, or from the CFD code Ventos, or to a statistical power curve.  

http://www.ciemat.es/eng/proyectos/pderrecursos.html�
http://www.cener.es/�
http://www.garradhassan.co.uk/�
http://www.smhi.se/�
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Hydro Quebec and some universities in Canada have a research collaboration for short-term 
prediction together with the Canadian met service, Environment Canada [237
 

]. 

Salcedo-Sanz et al. [238] present an interesting study of three global NWP models downscaled with 
three different parameterisations of MM5 (with local data assimilation) as input to different neural 
networks [239

 

]. Unfortunately, their result “that the bank of neural networks obtains better results than 
the best of the models with a single neural network” is unreliable at best, as it is based on only one 
month of data. 

Sideratos and Hatziargyriou have developed a wind power prediction model using neural networks 
emphasising the importance to fit a different model for each part of the power curve [240]. In addition, 
they combine RBF NN with fuzzy logic in order to improve the use of NWP predictions into a final wind 
power prediction model [241
 

]. 

Recently, Natural Power Consultants and meteoblue launched the ForeSite service [242

 

], where the 
mesoscale forecast of meteoblue can be enhanced by the Ventos CFD software.  

 
In the Nordic countries, but also in Canada, icing of wind turbines can decrease the production as the 
turbines need to shut down, or as the aerodynamic efficiency is strongly reduced due to ice 
aggregation. The Winterwind conferences are specialised in icing predictions. Thomson [243] talked 
on the potential of WRF and current developments for direct icing forecasts. Landberg [244] showed 
an example of power curve degradation due to icing. Durstewitz [245] reported on the difficulties 
encountered in Germany. Heimo [246

 

] presented the European COST action 727 “Measuring and 
forecasting atmospheric icing on structures”. 

Telvent DTNt [247

 

] have implemented a lightning warning system to evacuate the maintenance crew 
with a warning of lightning activity in the general area (30-60 miles). 
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5. Upscaling and spatio-temporal correlations 
Many larger clients are more interested in the result for a region than for a single wind farm, eg an 
electrically defined region as for Transmission System Operators (TSOs) or a market region as for 
traders. In only very few cases, typically where wind power only took off in the last few years, is there 
online data available for all turbines in a region. In many cases though, like in Denmark, the production 
data for most wind turbines is only available from the accounting system for payments for the wind 
turbine owners, with a delay of up to a month. This means that for the purposes of an online forecast, 
it is useless. Therefore, a correlation has to be found between a few wind farms delivering online data 
within a region, and the much later determined total regional production. This approach is called 
upscaling and shall be the topic of section 5.2. 
Since not all wind farms in a region see the same wind speed at the same time, and since the error 
made by the NWP is temporally and spatially distributed, the error for forecasting a region is smaller 
than the error for a single wind farm. In this context it is interesting to investigate the spatial 
correlations between both the wind power generation and the wind power forecasting errors, as it is 
the uncorrelated part of the error which generates the error improvement due to spatial smoothing. 
The variability of an averaged time series, eg expressed as the relative standard deviation of this time 
series, depends on the respective variability of the single time series, and on the correlation between 
the various series. For wind power forecasting, there are two effects which reduce the forecast error 
for a region in comparison to the one of a single wind farm: the generation as such is already 
smoother for a region due to the uncorrelated frequencies of the single wind farm generation profiles, 
making it thereby more easily predictable, and the forecast errors are uncorrelated on an even smaller 
length scale. For the former issue, refer to the literature overview given by Giebel [248

 

]. In most 
studies, the generation correlation vanishes on a length scale of about 750 km. 

5.1 Models with offsite data input 
In the early days of the development, some models were developed using translatorical models, 
essentially trying to get an idea of the upstream wind field and just advecting the features found 
towards the site in question. More recently, with larger computing power and better data handling 
facilities, the addition of upstream data as additional model input has received some attention.  
 
Papke et al. [249] used a data assimilation technique together with three models to get a forecast of 
about 1 hour ahead for the wind fed into the Schleswag grid in the German land of Schleswig-Holstein. 
These three models were a statistical model, analysing the trend of the last three hours, a 
translatorical model which moved a measured weather situation over the utility's area, and a 
meteorological model based on very simple pressure difference calculations. No accuracy was given. 
The translatorical model developed into the Pelwin system [250

Another translatorical model was proposed by Alexiadis et al. [

]. On a time scale of one hour, the 
weather fronts coming over the North Sea to Schleswig-Holstein are predicted to anticipate high 
negative gradients due to the shutdown of wind turbines.  

93, 251], which uses a cleaning of local 
influence much like the methodology used in the European Wind Atlas. The Spatial Correlation 
Predictor avoids the drawback of the usual constant delay method and shows improvements over the 
latter of up to 30% and more. The same data has been analysed by Barbounis and Theocharis [252], 
using a local recurrent neural network, and by Damousis et al. [253

 

] using a fuzzy model trained by a 
genetic algorithm-based learning scheme. 

Larson and Gneiting [254] developed a forecast algorithm using off-site observations in the vicinity of 
the wind farm and applying statistical space-time modelling. They used linear regression, neural 
networks, conditional neural networks as well as support vector machines and found improvements 
over persistence in the range of 7 – 37% in the best cases. Adding 5-km resolution MM5 forecasts 
helped the forecasts even further [255
 

]. 

Tastu et al. [256] analysed the auto- and crosscorrelations of the forecast errors between 5 regions in 
Western Denmark, and found that ”there exists in general a significant cross-correlation between 
forecast errors for neighboring areas with lags of a few hours. For the present case study, lags with 
significant dependency are up to 5 h, while the lags with most effect are the 1- and 2-h lags. This 
cross-correlation pattern is clearly conditioned by the prevailing weather situation, mainly 
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characterized by wind speed and direction. Wind direction is shown to play a crucial role”. Wind 
direction can be taken into account by a standard regime switching model, but the wind speed 
dependency required to use a conditional parametric regime switching models. Tastu, Pinson and 
Madsen [257

 

] used a Conditional Parametric Vector AutoRegressive model to take the other regional 
measurements into account in Western Denmark, and found a reduction in RMSE for the hour-ahead 
forecast of up to 18.5%.  

Wessel et al. [258,259,260

Jursa and Rohrig [

] used data from the 30m level of 30 wind measurement masts alongside 
the usual input of the WPMS, NWP fields from the DWD’s CosmoDE model and power data from 68 
reference wind farms distributed over all of Germany. For the first few hours, the addition of wind 
speeds gives a only a slight improvement in overall NRMSE. However, the “forecast accuracy is 
improved significantly for short forecast horizons especially at high wind speed cases” where the 
power signal does not contain any information, since the power curve is flat in that area. ”The NRMSE 
for situations with more than 90% full load is reduced by up to 20%.” - “Remarkable is that the 
additional input from the measurements takes effect up to forecast horizon up to eight hours. This is 
hardly to explain, as one would expect an approximation of the nRMSE values of the different models 
at higher forecast horizons, when the influence of the measurements on the forecast decreases.” 

261

 

] developed a technique for the automatic choice of input parameters and 
internal model parameters, based on particle swarm optimisation and differential evolution. “For the 
variable selection we constructed time delay vectors from data from 30 wind farm locations in an 
extended area. The optimization algorithms were used to find those time delay vectors which are 
optimal for the prediction of one wind farm.” For 10 wind farms in Germany, a marked improvement 
was seen in comparison to manually specified forecasting models. 

A special case of this is the visualisation proposed by Cutler [262, 263, 264]. He uses something akin 
to a Measure-Correlate-Predict technique for the wind field coming from the grid points of the NWP, to 
yield a site-equivalent wind speed. In this way, the orographic and other surface effects are taken out 
of the upstream field, and it is easier for the operator to assess the incoming fronts. Even the 
superposition of those fields for a number of wind farms is possible. An assessment of the spatial 
uncertainty using several grid points similar to the temporal uncertainty used for the Meteo Risk Index 
of Armines has also shown good potential [265 259]. Wessel et al. [ ] tried a related approach. “The use 
of the wind measurements to correct the predicted wind fields of the NWP models by a spatial shift of 
the whole wind field did not lead to an improvement in wind power prediction. The main reason is 
belived to be the difficulty to move wind fields over different surfaces.” 
 

5.2 Upscaling 
The upscaling approach is illustrated for the WPPT forecasting system (Wind Power Prediction Tool, 
developed at the Technical University of Denmark and now sold by Enfor) in an application for an 
owner of large wind farms in Figure 34. According to [266

• A reasonable (less than 20) number of wind farms  

], this configuration is used by a large wind 
farm owner in Denmark, and the installation has the following characteristics: 

• Online power production data is available for a number of wind farms.  
• Offline production data with a resolution of 15 min. is available for almost all wind turbines. 

These offline data are released with a delay of 3-5 weeks.  
As illustrated in Figure 34, the upscaling combines the present online production data with the 
historical offline data to predict the production. 
Since the correlation between forecast errors becomes weaker with distance, the forecasts for a 
region are much more accurate than the forecast for single wind farms. This error reduction scales 
with the size of the region in question. Within this region, only a certain number of wind farms is 
needed to predict the power production in a region quite accurately. For regions, the error 
autocorrelation is also stronger on a time scale of days than for single wind farms. 
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Figure 34. The WPPT forecasting system in an application where online 
production data is available only for some wind farms, and offline production 
data is available for most wind farms. Figure by Henrik Madsen, IMM/DTU.  

 
There are only few published results to the reduction of the error due to spatial smoothing effects. 
Söder [267

An interesting case is Germany. Due to the high number of older wind farms without good SCADA 
system, even the current amount of feed-in is not accurately known. The ISET [

] tried to develop a simple simulation model for the error of distributed wind power forecasts 
for power system modelling purposes, but as his model errors were based solely on persistence 
forecasting (and not on NWP results), his conclusions have to be treated with caution.  

268

 

] therefore 
developed a current feed-in based on an upscaling of the online wind farms in their 250MW Wind 
measurement programme. 

Boone [269

As a result of the cross-coherence study, Boone shows the following plots of cross-correlations and 
their decrease with distance. He used two different operational forecasting systems, WPPT and 
Prediktor, with two different NWP systems (the Danish HIRLAM model from the Danish Meteorological 
Institute and the German Lokalmodell of the Deutscher Wetterdienst) to develop an error simulation 
module for the Wilmar power system modelling tool [

] studied wind speed forecast errors and used a simple ARMA(1,1) time series model to 
simulate the wind speed forecast errors for single wind speed, and studied cross-correlation 
coefficients between forecast errors on two wind speeds, to support models with multiple wind speeds.  

270
Figure 35

]. Of those results, only the combination of 
DMI-HIRLAM and WPPT is shown here in . 
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A least squares fit of the correlations for each set of forecast lengths has been made according to the 
exponential function 

( )λdr −= exp   (1) 
where r is the cross-correlation, d is the distance between the wind farms, and λ is giving the relevant 
length scale. The estimated length scale increases with the forecast horizon from 62 km for the 0-5 h 
horizon to 113 km for the 42-47 h horizon, with an average of 81 km.  
 

 

Figure 35. Correlations between wind speed forecast errors recorded in 2003 for 
23 wind farms in western Denmark. In the upper plot, the correlations have been 
averaged over 25 km bins, while in the lower plot, each correlation is shown along 
with exponential fits. Darker shades refer to shorter forecast lengths. Figure is from 
Boone [269]. 
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The methodically most relevant study on the subject was made by Lange [15] and Focken [271

 

]. They 
applied power measurements on 30 wind farms in Germany to study the accuracy of the aggregated 
power output of wind farms distributed over given regions.  

Figure 36: Spatial cross-correlation of prediction deviations for various 
prediction times based on German data for the years 1996–1999. For comparison 
the cross-correlation coefficients of the prediction (36 h) are also shown. All cross-
correlation coefficients have been averaged over 25km bins. The figure is provided by 
M. Lange, energy & meteo systems GmbH. 

 
One of the results of Lange and Focken’s studies is the calculated cross-correlations shown in Figure 
36, using a prediction method based on NWP results. The German results exhibit significantly longer 
distances than the Danish results in Figure 35. Comparing the Danish and German results, they agree 
quite well for distances less than 100 km. For distances above 100 km, the Danish results show less 
cross-correlation than the German, but the cross-correlations are relatively low at those distances, 
especially for the shorter forecast horizons (6-12h). For longer forecast horizons (36-48h), the cross 
correlation decays slower with distance, especially for the German results.  
According to Focken et al. [271], the increased cross-correlation for increased forecast horizons might 
be due to the growing systematic errors for increasing forecast horizon which give rise to higher 
spatial correlations. For comparison the cross-correlation coefficients for the 36 h power prediction 
have been calculated in the same way and are shown in [271] as well.  
Lange and Focken have also analyzed normalized standard deviations of forecast errors. The 
standard deviations are normalized with the rated power of the corresponding wind power. If an 
ensemble consists of a number N of wind farms, then the relative standard deviation σensemble of the 
ensemble forecast error can be calculated according to 

∑∑
= =

=
N

x

N

y
yxxyr

N 1 1
2ensemble

1 σσσ   (2) 

where σx is the relative standard deviation of the forecast error of wind farm x power, and rxy is the 
cross correlation coefficient between forecast errors on wind farms x and y.  
Lange and Focken used the corresponding standard deviation of a single wind farm defined as the 
average standard deviation, i.e.  

∑
=

=
N

x
xN 1

single
1 σσ

         
(3) 
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and then the standard deviation ratio σensemble / σsingle is a measure for the reduction of the relative 
forecast error.  
Lange and Focken have calculated the standard deviation ratio for different prediction horizon times 
as shown in Figure 37. The three curves represent different sizes of regions, with diameters 140, 350 
and 730 km. It is seen that the deviation ratio depends only weakly on the prediction horizon, while it 
depends significantly on the region size.  

 
Figure 37. Forecast error standard deviation ratio versus prediction horizon for 
regions with diameters 140 km, 350 km and 730 km respectively. The figure is 
provided by M. Lange, energy & meteo systems GmbH. 

 
Figure 38: Forecast error standard deviation ratio versus region size quantified 
by the region diameter. The horizontal line gives the expected error reduction for an 
area the size of Germany. The figure is provided by M. Lange, energy & meteo 
systems GmbH. 
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Lange and Focken also analyzed the relation between forecast error standard deviation ratio and the 
region size as given in Figure 38. The result indicates that the standard deviation ratio decreases 
exponentially with the region size. 
 
For the forecast of 25 GW of offshore wind in the German Bight, Tambke et al. [272

37

] show for a 
weighted combination of ECMWF and DWD forecasts that the smoothing effect from the notional 
distribution of the wind power plants is 0.73, reducing the RMSE to 3 GW despite significantly higher 
production offshore. Together with the 25 GW installed onshore in Germany within a 800 km radius, 
this combination would reach a reduction to 0.45 of the error of a single wind farm, or 3.6 GW. Earlier 
[ ], they had shown that the forecast errors of the DWD model in the German Bight are comparable 
to those onshore. However, for the upscaling to hub height offshore, they found strong discrepancies 
between the usual wind speed profiles and the ones found at Horns Rev, so they developed a profile 
reaching into the Ekman layer, called Inertially Coupled Wind Profiles. 
 
Von Bremen et al. [273

Figure 39

] simulated the wind power forecast error with high resolution weather data 
(7km) for the North Sea and the Baltic Sea. The decrease of the forecast error cross-correlation is not 
radial to the reference site ( ) and diminishes faster over land and in longitudinal direction. 
This is due to the difference between offshore and onshore wind conditions and the prevailing westerly 
wind direction, respectively. It is very important to note that the forecast error between the two 
reference sites (FINO1 and Baltic1) is almost uncorrelated. Thus, for the safe integration of large 
shares of offshore wind power it is favourable to install equal shares of wind power capacity in remote 
offshore waters.  

Figure 39: Wind power forecast error correlation (lead time 25-48h) for FINO1 
(left) and the planned offshore wind Park Baltic1. 

Rohrig [274] presents the German experience from the day-ahead forecast (24h to 48h ahead 
regarding the start of forecast model at the weather service): Single Wind Farm: 10 % to 20 % (RMSE 
% of nominal capacity) - Single Control Area: 7.5 % to 10 % - All Control Areas (whole Germany): 5% 
to 6.5%. Further reductions can be expected from combining different forecasting models: The first 
results from Germany show the best model performing at 5.1 % RMSE, a "simple" combination 4.2 % 
and "intelligent" combination 3.9 %. 
 

Table 7: Level of accuracy of wind power predictions in Germany (NRMSE = 
normalized root mean square error, % of installed wind capacity). Source: Rohrig 
[274

NRMSE [%] 

]. 

Germany (all 4 control 
zones) ~1000 km  

1 control zone ~ 350 km 

day-ahead 5.7 6.8 
4h ahead 3.6 4.7 
2h ahead 2.6 3.5 
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Likewise, for Finland Holttinen et al. [275

Figure 40

] present a reduction in forecasting error from up to 16% for 
the single site 24-h ahead forecast down to about 10% for the total error of four wind farms with a 
maximum spacing of about 380 km. “The Mean Absolute Error (MAE) normalized by installed capacity 
is between 11–15 % for 12 hours ahead for one site. Assuming the same installed wind power 
capacity in all 4 sites this drops the forecast error to 9%. For 36 hours ahead, one site errors are 13–
18 % and aggregated error drops to 11%.” 

 shows the forecast errors for one and four sites respectively, versus the forecast horizon.  

 

Figure 40: Mean absolute forecast error in % of capacity – year 2004 Finland. 
The graph is from Holttinen et al. [275] 

For combining the predictions of East and West Denmark in 2001, Holttinen [276

Upscaling has also been a topic in the ANEMOS project [

] finds a reduction of 
prediction error of 9%.  

277

Within that framework, Siebert and Kariniotakis [

]. For Jutland, a reduction down to 6.2% 
NMAE is reported, while for Ireland, the error only reduces to 11.6%. 

278

 

] have looked into the optimal number of reference 
wind farms for the Jutland/Fyn area. Out of a total of 23 available wind farms, the optimal number of 
reference wind farms was shown to be only 5. This surprisingly low number is a combination of the 
sufficient coverage of those 5 farms of the main meteorological regions in the area, plus the very good 
data quality those 5 could offer. More wind farms would have led to more noise in the input signal for 
the upscaling algorithm. 

Lang and McKeogh [279

 

] show for the Irish system an overall error of 7% NMAE (9.3% NRMSE) using 
the WEPROG MSEPS as input. For individual wind farms, the error is in the range between 11 and 
16% NMAE, or 15 and 21% RMSE, respectively, so roughly the double of the nation-wide error. The 
error also decreases with average load factor, probably because wind farms with higher load factor 
are more often at rated power, where one m/s error in the wind speed leads to very little error in the 
power.  

For three wind farms in the UK with a maximum separation of 450 km, Parkes et al. [280

 

] report a 
portfolio effect of a 5% reduction in NMAE, from about 15% for the day-ahead forecast for a single 
wind farm to about 10% for the prediction for all three wind farms. This led to a potential saving of 
£3/MWh. The portfolio effect of three wind farms in Spain with maximum separation of 600 km also 
yielded a reduction in NMAE of about 5%, this time from about 20% for a 20-hour horizon down to 
about 15%. 
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Figure 41: The MAE scaled with average generated power as a function of the 
load factor. Source: Lang and McKeogh [279]. 

 
Ishihara et al. [281

 

] show for the regional prediction of 9 wind farms in Northern Japan, that already 
three wind farms having about half the installed capacity are enough with even a quite simple 
upscaling approach. 

Since Liu et al. [282

 

] in their resource and forecasting assessment of global solar and wind power 
resource voice the opinion that “[t]here is no forecasting for solar and wind energies”, they do an 
assessment themselves based on “the NCEP global forecasting data” (not more specified than that). 
Their plot for both daily and three-hourly forecasts averaged over the whole globe uses the peculiar 
RMS over Mean Value as y-axis, but also shows that the daily means are better forecasted than the 
three-hourly means, and that the error roughly doubles between the first 24 hours and 5 days ahead.  

5.3 Ramp forecasting 
In the early days of wind power, installations in e.g. Denmark and Germany were small and well 
distributed. This led to a quite smooth wind power feed. In recent years though, especially in the new 
markets like Australia and the US or Canada, but also generally offshore, wind farms are installed in 
100-150 MW or even larger blocks. This leads to a much larger possibility for quick variations, or 
ramps. Those make life difficult for the personnel in the control room, as the wind feed can suddenly 
decrease several GW, going far out of the bounds of the usual spinning reserve requirements. 
 
This was first taken into account as a forecasting requirement in the pilot project of the Alberta Electric 
System Operator (AESO) in 2006 [283]. The purpose of the AESO pilot project was to trial different 
methods and vendors of wind power forecasting to determine the best approach to forecasting wind 
power in Alberta in the future. Three vendors were chosen with global forecasting experience; AWS 
Truewind (New York), energy & meteo systems (Germany), and WEPROG (Denmark). Each vendor 
forecasted for 12 geographically dispersed wind power facilities for one year (May 07 to May 08) 
providing a number of forecast products covering the next 48 hours and an hourly refreshment rate. A 
final report written by ORTECH exists [284
 

]. 

Zack [285

41

] pointed out the importance of understanding of the physical processes leading to large 
ramps, with the example of a complex meteorological phenomenon at the San Gorgonio pass in 
California. He then proposed to use event based forecasting specifically for events important to the 
users. Those considerations eventually led to the development of the ELRAS, the ERCOT (Electricity 
Reliability Council Of Texas) Large Ramp Alert System [ ]. They use a 3DVAR data assimilation 
system of many freely available meteorological data in and around Texas as a starting point for the 
ELRAS-RUC (Rapid Update Cycle) model, which is a NWP model run every two hours. The results of 
this feed a set of early detection mechanisms, which finally are used in a regime switching statistical 
model. As a metric for the ramp forecast, they use the Critical Success Index CSI, defined as 
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Number_of_Hits / (Number_of_Hits + Number_of_False_Alarms + Number_of_Misses), and the 
Ranked Probability Skill Score RPSS.  
 
Cutler et al. [50] checked the performance of WPPT in Tasmania running with MesoLAPS of the 
Australian Bureau of Meteorology for the prediction of 41 ramp events over one year. “Sub-hourly 
ramp events also involve some shutdown cases, but also yaw-misalignment cases caused by a 
sudden jump in the wind direction, and variability cases during relatively benign conditions caused by 
nearby low pressure systems or pre- and post-frontal activity. Hence, the prediction of large ramps in 
wind power output involves the consideration of many different types of weather events.” The 
performance of the 12.5km resolution MesoLAPS (used directly or in WPPT) was actually worse than 
pure climatology, which probably is a feature of the RMSE punishing timing errors.  
 
Garrad Hassan [286

Figure 42
] show a user-friendly way of showing up- and down-ramps with their timing 

uncertainty and projected level, see . “For a collection of UK wind farms this distribution has 
a standard deviation of 4.0 hours for a forecast horizon of 24 hours, and 3.3 hours for a forecast 
horizon of 3 hours.” A combination of NWP forecasts quite expectedly brought the error down, but for 
the ramps forecasts, the “better NWP forecast has a ramp capture nearly 10% higher than the 
combination and the other NWP forecast”. 

 
Figure 42: Visualisation of GL Garrad Hassan of ramp timing risk for up- and 
downramps. Source: [286] 

 
A promising approach to ramps and variability forecasting is the use of state-transition or of regime-
switching models. Reikard [287] models the temperature dependence of the wind speeds and then 
adds state transition models to achieve a performance of up to 10% better than persistence. Also 
other tested models (GARCH, EGARCH, neural nets and Kalman Filter) did not work better on the 8 
time series of hourly wind speeds. He concludes “The finding of fractality in wind speed data makes 
prediction inherently difficult. While the fractal dimension is a measure of the probability of outliers, it 
has a more subtle implication. In stochastic time series, fractality is typically generated by 
multiplicative relationships among two or more stochastic processes. This in and of itself will give rise 
to large errors.” In a later paper [288], regime switching models achieved a similarly good performance 
to multivariate regressions using selected causal factors, or state transition models. However, when 
looking at the distribution of the forecasted wind speed, the regime switching models were closer to 
the measured values than the other possibilities (also Kalman filters or neural networks). He used two 
regimes, a high regime where persistence was used, and a low regime where regressions are used. “If 
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the states could be predicted perfectly, the regime-switching model would improve forecast accuracy 
by an additional 2.5 to 3 percentage points.” 
 
Bossavy, Girard and Kariniotakis [289

 

] investigated two approaches for ramp forecasting: Using the 
timing and intensity of the predicted ramps as additional variables, they produced much improved 
reliabilities for the forecasted quantiles, especially in the high range of the probabilistic scale. And 
mapping the number of ensemble members forecasting a specific ramp event to a probability of that 
ramp actually occurring, they could produce confidence intervals of ramps occurring.  

Bonneville Power Administration [290] held a competition dedicated for ramp forecasting. The first 
results [291] indicated that for ramps, hourly predictions are not good enough, and shorter timings of 
the forecast lead to smaller deviations. However, as Focken [292

 

] points out, in the subsequent 
Request for Proposals for a short-term prediction system, ramps are not mentioned at all. Focken 
(having been part of the ramp forecasting competition with his company energy & meteo systems) 
attributes this to the fact that a ramp does not have an action in the control room associated with it – 
“the operators don’t know what to do with a ramp forecast”. Having said that, in the remainder of his 
talk he points out that the ramp forecast needs to be something separate from the usual RMS-
optimised forecast, since this tends to be too smooth. 

Xcel Energy currently have a project on ramp prediction together with NCAR and Vaisala. The Finnish 
measurement company thereby tries to get into the solutions market with the commercial offering of 
their RampCast product [293], based on a set of masts around an existing wind farm and aiming at 0-3 
hours prediction horizon. From 3 to 60 hours or more, NCAR’s DICast [294] uses a Dynamic MOS 
(DMOS) to find the best inputs for the removal of bias between the nacelle wind speeds of every 
individual turbine and one of many different WRF and MM5 runs. The DMOS parameters are 
recalculated every week and are differentiated by model run time and lead time. Then, the individual 
forecasts are combined into a consensus forecast “analogous to the job done by a human who, once 
having removed biases from individual models’ forecasts, must combine them into a single final 
forecast.” The DMOS step outperforms the best predictor by about 5-10% of RMSE error, while the 
consensus step reduces the error further 10-15%. 
Onsemble seems to pursue the same niche for a hub height wind sensor network. They deploy them 
on cell phone towers, currently at ERCOT, BPA and PSCO [295
 

]. 

5.4 Variability forecasting 
While ramp forecasting and variability forecasting bear some resemblance, the two are actually quite 
different. Variability forecasting refers to large amplitude, periodic changes in wind speed, and it is 
only recently that it has come into the sight of researchers. Davy et al. [296

Vincent et al. [

] defined an index of 
variability based on the standard deviation of a band-limited signal in a moving window, and 
developed methods to statistically downscale reanalysis data to predict their index. Amongst the 
important predictors of variability, they found planetary boundary layer height, vertical velocity and U 
wind speed component during the months June-September (southern hemisphere winter), and U-wind 
speed, geopotential height and cloud water for the months December-February (southern hemisphere 
summer). 

64,297

 

] defined a variability index as the sum of all amplitudes occurring within a given 
frequency range based on an adaptive spectrum. They studied the climatological patterns in variability 
on time scales of minutes to 10 hours at the Horns Rev wind farm, and showed that there were certain 
meteorological conditions in which the variability tended to be enhanced. For example, variability had 
a higher average amplitude in flow from sea than in flow from the land, often occurred in the presence 
of precipitation and was most pronounced during the autumn and winter seasons. 

Von Bremen and Saleck [298

 

] proposed the totalfluc, the sum of the absolute values of gradients 
exceeding a certain threshold within a, say, 6h period, as a measure of variability. The variability of 
wind speed data from FINO 1, converted to power with the power curve of the nearby Alpha Ventus 
offshore wind farm, was highest around 10m/s wind speed. A clustering analysis of the principal 
components of the 500hPa geopotential height showed that the largest variations occurred for north-
western flow.  

http://www.vaisala.com/en/energy/electricaloperations/Pages/default.aspx�
http://www.onsemble.ws/�
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6. Uncertainty of wind power predictions  
Spot predictions of the wind production for the next 48 hours at a single wind farm or at a 
regional/national level are a primary requirement for end-users. However, for an optimal management 
of the wind power production it is necessary to also provide end-users with appropriate tools for on-
line assessment of the associated prediction risk. Confidence intervals are a response to that need 
since they provide an estimation of the error linked to power predictions. Essentially, two main 
methodologies for uncertainty forecasting have established themselves in the industry: statistical 
approaches working on single NWP forecasts, and uncertainties derived from ensembles of 
predictions.  
Please note that there is a companion to this report, detailing the State-of-the-Art in probabilistic 
forecasting, also published by the ANEMOS consortium [299
 

]. 

Pinson et al. [300

 

] propose a framework for the evaluation of probabilistic forecasts of wind power. 
The “described evaluation framework is composed of measures and diagrams, with the aim of 
providing useful information on each of these properties, namely reliability, sharpness, resolution and 
skill.” They apply their framework to two different quantile forecasts for a Danish wind farm. 

6.1 Statistical approaches 
While the estimation of confidence intervals for various types of mathematical models is an 
established field, only few papers specific to the short-term wind power prediction problem are 
published.  
While statistical models already have an estimate of the uncertainty explicitly integrated in the method, 
physical models need some additional processing to yield an uncertainty result as well. 
Typical confidence interval methods, developed for models like neural networks, are based on the 
assumption that the prediction errors follow a Gaussian distribution. This however is often not the case 
for wind power prediction where error distributions may exhibit some skewness, while the confidence 
intervals are not symmetric around the spot prediction due to the form of the wind farm power curve. 
On the other hand, the level of predicted wind speed introduces some nonlinearity to the estimation of 
the intervals; eg at the cut-out speed, the lower power interval may suddenly switch to zero.  
 
Pinson and Kariniotakis [301, 302

The limits introduced by the wind farm power curve (min, max power) are taken into account by the 
method proposed by Luig et al. [

] propose a methodology for the estimation of confidence intervals 
based on the resampling approach. This method is applicable to both physical and statistical wind 
power forecasting models. The authors also present an approach for assessing on-line the uncertainty 
of the predictions by appropriate prediction risk indices (“Meteo-Risk Index”) based on the weather 
stability. They use a measure of the distance (or the similarity) of subsequent predictions in a poor-
mans ensemble. The approach was verified using HIRLAM forecasts and data from 5 wind farms in 
Ireland. 

303] and Bofinger et al. [304

Lange and Waldl [

]. This method models errors using a ß-
distribution, the parameters of which have to be estimated by a post-processing algorithm. This 
approach is applicable to models that use a well-defined wind park power curve.  

306,305] classified wind speed errors as a function of look ahead time. The errors in 
wind speed of the older DWD Deutschlandmodell are fairly independent of the forecast wind speed, 
except for significantly lower errors for the 0 and 1 m/s bins [306

319

]. Another result was only for some 
wind farms did the error depend on the Grosswetterlage (a classification system with 29 classes for 
the synoptic situation in Europe), as classified by the DWD. Due to the non-linearity of the power 
curve, wind speed forecasting errors are amplified in the high-slope region between the cut-in wind 
speed of the turbine and the plateau at rated wind speed, where errors are dampened. Landberg et al. 
[ ] reported the same behaviour. Nielsen [307

Bremnes [

] also shows the WPPT error for western Denmark to 
have its peak at a forecast of half the installed capacity. This method is only applicable to models that 
provide intermediate forecasts of wind speed at the level of the wind park.  

147] developed a probabilistic forecasting technique, estimating the different quantiles of the 
distribution directly. In [308], he describes his method of local quantile regression (LQR) in more detail, 
and shows that for a test case in Norway, Hirlam forecasts have a lower inter-quantile range than 
climatology, which means that the Hirlam forecasts actually exhibit skill. LQR Hirlam features about 
10% better in economic terms than pure Hirlam forecasts, increasing the revenue from ca 75-79% of 
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the ideal income (without any forecast errors) to ca 79-86%, depending on the horizon. However, his 
pure Hirlam forecasting did not have an upscaling or MOS step, so this might have worked in favour of 
LQR in the comparison. He proposed to use the method to reduce the large amount of information 
found in meteorological ensembles. The motivation for this was that he could show that the 
economically optimal quantile was not the central (“best”) quantile, but one given by the relative prices 
of up- and down-regulation. 
In [309

 

], Bremnes compares three different statistical models for quantile forecasts: LQR, the Local 
Gaussian model (assuming that, around the forecasted values the distribution can be approximated 
with a Gaussian) and the Nadaraya-Watson Estimator. Applied to a wind farm in Norway with 
Hirlam10 forecasts, no clear preference of method is found, although the Local Gaussian model 
produces slightly more uncertain forecasts than the other two methods. So if ease of implementation is 
an issue, the Nadaraya-Watson Estimator might be the best. 

Nielsen and Madsen [307] developed a stochastic model for Eltra, describing variance and correlation 
of the forecast errors of WPPT, version 2. Nielsen et al. [310, 311

 

] tried a method similar to the LQR 
technique for the case of the small Danish offshore wind farm Tunø Knob, using WPPT with various 
parameters as input, among them the Meteo-Risk Index. They concentrated on the 25% and 75% 
quantiles. Also here, the predictions proved “sharp” in comparison to historic data, meaning that the 
Inter-Quantile Range (IQR), given as the difference between the 75% and the 25% quantile, is much 
narrower than the historical average of the quantiles of the production distribution. There were 
deviations in quantiles between the training set and the test set. For the LQR approach, it did not 
seem important to include the MRI.  

These are results for single wind farms. Since the correlation between forecast errors is rather weak 
with distance, the forecasts for a region are much more accurate than the forecast for single wind 
farms (as Focken points out [312 271, ]). This error reduction scales with the size of the region in 
question. This means that only a certain number of wind farms is needed to predict the power 
production in a region well enough. For regions, the error autocorrelation is also stronger on a time 
scale of days than for single wind farms.  
 
Dobschinski et al. [313

 

] evaluated and compared five different models (Multi-linear regression, Linear 
quantile regression, Artificial neural networks (ANN), Simple classification, Adaptive model) to 
estimate dynamic prediction intervals of existing wind power forecast systems. Their performance 
concerning reliability differs significantly but their sharpness is nearly equal. The results of all models 
have been combined in an ensemble model which results in a higher quality of forecast uncertainty 
estimation. Regarding the sharpness it leads to an improvement of about 11% compared to the single 
models. Concerning the total German wind power generation an improvement of about 25% is 
obtained when using the up-scaled ensemble average prediction intervals compared to the reference 
static approach. It was also shown, that the advantage to use the ensemble model instead of each of 
the single models increases for higher reliabilities and decreasing quality of the underlying power 
prediction system. 

6.2 Ensemble forecasts 
The increase in available computer power led to some progressive thinking on how to make the best 
use of these resources. Instead of just increasing the resolution more and more, the processing cycles 
might be better used in reducing the other errors. This can be done using ensembles of forecasts, 
either as a multi-model ensemble, using many different NWP models of different parameterisations 
within the same model, or by varying the input data and calculating an ensemble based on different 
forecast initialisations. The use of this is to be able to quantify the uncertainty inherent in the forecasts. 
For example, if a slight variation in the initial state of the model (which still is consistent with the 
measured data) leads to a larger variation a few days ahead, where eg a low pressure system takes 
one of two distinct tracks, then the situation is different from one where all low pressure tracks more or 
less run over the same area. A number of groups in the field are currently investigating the benefits of 
ensemble forecasts. 
 
Giebel et al. [314] and Waldl and Giebel [315,316] investigated the relative merits of the Danish 
HIRLAM model, the Deutschlandmodell of the DWD and a combination of both for a wind farm in 
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Germany. There, the RMSE of the Deutschlandmodell was slightly better than the one of the Danish 
model, while a simple arithmetic mean of both models yields an even lower RMSE.  
Boone and Giebel [317] extended this analysis to additional wind farms and used two different short-
term prediction models for the analysis. The result is the same, that a combination of models is helpful. 
H.Aa. Nielsen et al. [318

 

] showed that the combination of models can always be better than the best 
of the two input models, and that in most cases even a simple average outperforms the best of the 
models. In their paper, they develop the theory of how to combine forecasts if bias and 
variance/covariance of the individual forecasts are known. They try their approach for two wind farms 
in Denmark (Klim) and Spain (Alaiz) with up to four individual forecasts per wind farm, all done by 
WPPT with different NWP input. This “resulted in improvements as high as 15%, with an overall level 
of 9%, for the wind farm near Klim in Denmark. For the wind farm near Alaiz, the corresponding 
numbers are 9 and 4%, respectively. However, for Alaiz if one meteorological forecast and three 
different combinations of MOS and power-curve are used, then no improvement is obtained.” 

In the framework of the Danish PSO funded project Intelligent Prognosis, Nielsen et al. [122] showed 
generic figures for the potential improvement of an additional NWP forecast depending on the 
correlation between the forecasts and the relative performance. The figures were verified for the Klim 
wind farm in Denmark and Alaiz in Spain. It “is recommended that two or three good meteorological 
forecasts are used and the forecast errors of these should have low correlation (less that 
approximately 0.8). This seems to be the case for meteorological forecasts originating from different 
global models.” 
 
Landberg et al. [319

Pinson et al. [

] used a poor man’s ensemble to estimate the error of the forecast for one wind 
farm. A poor man’s ensemble is formed using the overlapping runs of the forecasting model from 
different starting times for a given point in time. In his case, HIRLAM comes every 6 hours with a 
model horizon of 48 hours, leading to an ensemble size of up to 8 members for the same time. The 
assumption is that when the forecasts change from one NWP run to the next, then the weather is hard 
to forecast and the error is large. However, no conclusive proof for this intuitive assumption could be 
found. Please also note that the term poor man’s ensemble in meteorological circles can also be used 
to denote a multi-model ensemble from various meteorological institutes. This probably reflects the 
fact that they do not have to pay the end user prices when exchanging data among themselves. 
Another expression occasionally used for this type of ensembles is lagged average ensembles or 
lagged initial conditions ensembles. 

320

 

] extended the Prediction Risk Index concept to such a lagged average ensemble 
derived from ECMWF forecasts, and compared it to the Prediction Risk Index derived from the 
dedicated NCEP and ECMWF ensemble forecasts. For 10 months of data from the Danish Tunø Knob 
wind farm, “it appears that the ECMWF-based ensembles of wind generation have higher informative 
value owing to their higher discrimination ability.”  

M. Lange et al. [61] used input from 16 different European met services for Previento in order to run a 
forecast combination. They tried to combine up to 5 different NWP forecasts, and showed that the 
combination is quite advantageous if the forecasts based on different NWPs first have been 
individually tuned. This way, a reduction of forecast errors from 5% to 4.2% RMSE for all of Germany 
was achieved. 
Similar results have been reported from the ISET by Cali et al. [321, 322

Cali et al. [

], where the best combination 
coming out of the 75 members of the MSEPS (mentioned below) is achieved after first tuning the 
ANNs individually for every member, and then training a second ANN to combine the optimised 
forecasts. 

321] also showed that the combination of three NWP models for the whole of Germany 
reduces the RMSE from between 5.8 and 6.1% for the individual models to 4.6%. Using all 75 
members of the MSEPS as input to the neural networks of WPMS, instead of just the ensemble mean 
or a single member, reduced the error considerably. 
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The optimal combination of forecasts is a field which has garnered attention quite recently. As 
Sánchez [323

 

] points out, “It is common in the wind energy industry to have access to more than one 
forecaster. It is well known that the relative performances of the alternative wind power forecasts can 
vary with the wind farm, and also with time. In these cases, an adaptive combination of forecasts can 
be useful to generate an efficient single forecast.” He therefore implemented for the Spanish TSO a 
two-step procedure involving the Adaptive Exponential Combination. “The AEC is designed to give all 
of the weight to the best available forecast.” 

 
Möhrlen et al. [324

Their group was also coordinator of an EU-funded project called HONEYMOON - High resOlution 
Numerical wind EnergY Model for On- and Offshore forecastiNg using ensemble predictions”. One 
part of the project was to reduce the large-scale phase errors using ensemble prediction. A final public 
report is available [

] use a multi-scheme ensemble of different parameterisation schemes within 
HIRLAM. They make the point that, if the observational network has a spacing of 30-40 km, it might be 
a better use of resources not to run the NWP model in the highest possible resolution (in the study 1.4 
km), but instead to use the computer resources for calculating a large amount of forecasts, and 
generate an ensemble. A doubling of resolution means a factor 8 in running time (since one has to 
double the number of points in both horizontal grid components and time). The same effort could 
therefore be used to generate 8 ensemble members. The effects of lower resolution would not be so 
bad, since effects well below the spacing of the observational grid are mainly invented by the model 
anyway, and could be taken care of by using direction dependent roughnesses instead.  

210], but does not talk about results in any detail. 
WEPROG's Multi-Scheme Ensemble Prediction System MS-EPS (see weprog.com) has been 
operational since 2004. Based on WEPROGs own NWP formulation, the system is built up with three 
different dynamics schemes, five different condensation schemes and five different vertical diffusion 
schemes, which result in an ensemble of 75 members. The characteristic of the MSEPS system is that 
it has the capabilities to develop physical uncertainties with well-defined differences among the 
ensemble members. This is of advantage especially for wind energy predictions, because it means 
that the uncertainty is not dependent on the forecast horizon as in other ensemble approaches, but 
instead develops in every forecasts step as a result of the physically different formulations of the 
individual ensemble members (eg [325
 

] or http://www.weprog.com/publications).  

 
In Denmark, the Zephyr collaboration had a PSO-funded three-year project [326,327] on the use of 
different kinds of ensembles for utility grade forecasting. Amongst others, the NCEP/NCAR and 
ECMWF ensembles were used, multi-model ensembles (with input from both DMI and DWD) were 
compared, and some methods for a good visual presentation of the uncertainty were researched. One 
main result [328] was the development of a technique to transform the quantiles of the meteorological 
distribution to the quantiles of the power forecast distribution. The resulting quantiles were sharp and 
skilful. The use of pure meteorological ensemble quantiles was shown to be insufficient, since the 
ensemble spread is not probabilistically correct. Even using the transformation it was not possible to 
get satisfactory outer quantiles (eg below 15% and above 90%), since the meteorological ensemble 
spread is not large enough. This is especially relevant for the first days of the ensemble runs. 
However, in practice this might be less of a problem, since the ensemble runs also needed 17 hours to 
complete, therefore making the first day impossible to use operatively. The model was used in a demo 
application run for two Danish test cases, the Nysted offshore wind farm and all of the former Eltra 
area (Denmark West). The results were quite satisfactory, have a horizon of one week, and were used 
for maintenance scheduling of conventional power plants, for the weekly coal purchase planning and 
for trading on the Leipzig electricity exchange, which is closed over the weekends. Besides a final 
project report [329], a number of more detailed reports on the model [330], the experiences with the 
demo application [331], the possibilities of nesting HIRLAM directly in the ECMWF ensemble 
members [332], and some special turbulent kinetic energy parameterisations within HIRLAM [333

 

] 
came out. 

Roulston et al. [334, 335] evaluated the value of ECMWF forecasts for the power markets. Using a 
rather simple market model, they found that the best way to use the ensemble was what they called 
climatology conditioned on EPS (the ECMWF Ensemble Prediction System). The algorithm was to find 
10 days in a reference set of historical forecasts for which the wind speed forecast at the site was 
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closest to the current forecast. This set was then used to sample the probability distribution of the 
forecast. This was done for the 10th, 50th and 90th percentile of the ensemble forecasts.  
 
Taylor, McSharry and Buizza [336

 

] create a calibrated wind power density from the ECMWF EPS 
system. “The resultant point forecasts were comfortably superior to those generated by the time series 
models and those based on traditional high resolution wind speed point forecasts from an atmospheric 
model.” 

Pinson and Madsen [337

 

] “describe, apply and discuss a complete ensemble-based probabilistic 
forecasting methodology” for the example case of Horns Rev as part of the Danish PSO research 
project “HREnsembleHR – High Resolution Ensemble for Horns Rev, funded by the Danish PSO Fund 
from 2006-2009 (see www.hrensemble.net). The forecasts from WEPROG's 75 member MSEPS 
ensemble are converted to power using the novel orthogonal fitting method. The single forecasts are 
then subjected to adaptive kernel dressing with Gaussian kernels, since “in theory, any probabilistic 
density may be approximated by a sum of Gaussian kernels”, meaning that the resulting probabilistic 
distribution can be “a non-symmetric distribution (and possibly multimodal), thus being consistent with 
the known characteristics of wind power forecast uncertainty”. 
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7. The value of forecasting 
 
Even though the necessity and advantages of wind power forecasting are generally accepted, there 
are not many analyses that have looked in detail into the benefits of forecasting for a utility. Partly this 
lack of analyses stems from the fact that a lot of data input and a proper time step model are needed 
to be able to draw valid conclusions. In recent years, a number of wind integration studies have 
undertaken the effort with data backing from typically the TSO. 
 
Milligan et al. [338

Hutting and Cleijne [

] used the Elfin model to assess the financial benefits of good forecasting, taking 
into account the load time series, a wind time series, the distribution of power plants for different 
utilities, and the forced outage probabilities of the normal plant mix. Even though his method of 
simulating the forecast error was not very close to reality, some general conclusions could be drawn. 
When varying the simulated forecast error for three different utilities, zero forecast error always came 
out advantageously. The relative merit of over- and underpredicting varied between the two utilities 
analysed in detail: while underpredicting was cheaper for one utility, the opposite held true for the 
other. The cost penalty in dependency of the forecast error was dependent very much on the structure 
of the plant mix and the power exchange contracts. Generally speaking, a utility with a relatively large 
percentage of slow-start units is expected to benefit more from accuracy gains.  

339

Nielsen et al. [

] analysed the proposed structure of the Dutch electricity exchange, and found 
that 1500 MW of offshore wind power could achieve an average price of 3.5 €c/kWh, when coupled 
with back-up conventional plants. This assumes that "75% of the output can be predicted well enough 
for the market". Perfect prediction would raise the price to 4 €c/kWh. However, building 6000 MW of 
wind power would decrease the price to 2.9 €c/kWh. Reducing the specific power of the rotor from 500 
to 300 W/m2 would decrease the overall power output, but increase the capacity factor, thereby 
increasing the predictability and therefore enhancing the value by an extra 0.05 €c/kWh. This would 
actually improve the price performance ratio by about 10%, just by installing larger blades on the 
turbines. Spreading out the wind farms along the coast would increase the reliability of the generation 
and therefore lead to another 0.15 €c/kWh.  

340] assessed the value for Danish wind power on the NordPool electricity exchange to 
be 2.4 €c/kWh in a year with normal precipitation (the NordPool system is dominated by Norwegian 
and Swedish hydropower). This would be reduced by 0.13-0.27 €c/kWh due to insufficient predictions. 
The same result is expressed as the penalty due to bad prediction of wind power being 12% of the 
average price obtained on NordPool by Sørensen and Meibom [341
Kariniotakis et al. [

].  
342] propose a methodology to assess the benefits from the use of advanced wind 

power and load forecasting techniques for the scheduling of a medium or large size autonomous 
power system. The case study of the Greek island of Crete is examined. The impact of forecasting 
accuracy on the various power system management functions is analysed. According to the 
calculations by Nogaret et al. [343

Gilman et al. [

], the accuracy of the prognostic tools should be improved to more 
than 90% to reduce the costs for regulating power to an acceptable level.  

344

Mylne [

] state that TrueWind’s forecasting saved Southern California Edison $ 2 million in 
imbalance cost for December 2000 alone, compared to a system based on pure climatology. 

345

The potential value of forecasting to wind power generators in the UK was illustrated by Bathurst and 
Strbac [

] used a multi-element contingency table technique to estimate the value of persistence 
and NWP forecasting for a single 1.65 MW turbine under the UK NETA trading system at a look-ahead 
of between 7.5 and 13 hours. The value of the NWP forecast over persistence was found to range 
from a few pence to as much as £7 per hour. Assuming a 30 % capacity factor, this corresponds to a 
forecast value ranging from around 0.03 to 0.3 €c/kWh. 

346] shortly after the introduction of the New Electricity Trading Arrangements (NETA) in 
March 2001. Under NETA, the imbalance charges (charges for over- or under-delivery) are 
determined by market conditions and can lead to severe penalties for generators who cannot make 
accurate production forecasts. Indeed, in the first week of NETA’s operation, imbalance charges were 
such that wind generation had net negative value: -0.41 p/ kWh (~ -0.6 €c/kWh) using a standard 
forecasting method. In a follow up paper, Bathurst et al. [347] present a method to determine the 
optimum level of contract energy to be sold on the market using Markov probabilities for a wind farm. 
The effect of market closure delays and forecasting window lengths is also shown. 
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Ensslin [348

Parkes et al. [

] talks about the value of a forecasting tool in the framework of an “Internet-based 
information system for integration of Renewable Energy Sources and Distributed Generation in 
Europe”.  

280] did an analysis using the GH Forecaster service for the UK and Spain. While the 
two markets are different, both work under the assumption that it should pay to have better forecasts. 
In the UK, the best forecast was the centered one, meaning that the technically best forecast was also 
the economically best for the wind farm owner. A 50 MW wind farm with 30% capacity factor could 
gain £660.000 from forecasting. Due to the 5% lower MAE for a total portfolio of 3 wind farms, another 
£3/MWh could be gained. In Spain, the exercise yielded about 7 €/MWh for the single wind farm, and 
another 3 €/MWh for a portfolio. Using a better power model, their group estimated [118] for a 100MW 
wind farm in the UK an added income of 177.000 EUR per year for a 1.2% MAE improvement. 
 
The importance and impact of good forecasts was also stated by Operations Manager Carl Hilger from 
Eltra (the antecessor of Energinet.dk [349

 

]: “If only we improved the quality of wind forecasts with one 
percentage point, we would have a profit of two million Danish crowns.” Similar orders of magnitude 
are quoted infrequently by other utilities or traders, but usually not for publication. 

The ILEX study [350

Barthelmie et al. [

] is a report that quantifies the additional system costs that are likely to be 
incurred if the volume of renewable energy in Great Britain were to increase from an assumed level of 
10% of demand to 30% by 2020.  

351

 

] investigated the economic benefit of forecasts in the UK. “Using an example 
with a mean hub height wind speed of close to 8 ms-1 and prices from 2003 we indicate that the 
maximum benefit using forecasting is approximately £4.50/MWh”, measured as increase in value of 
the produced and traded MWh of wind energy. 

Sustainable Energy Ireland [352

In the Irish All Island Grid Study, Meibom et al. [

] studied the potential impact on costs and emissions increased wind 
generation can have on operating reserve in Ireland. 

353

 

] showed that improved forecasting in the Irish 
system would be “relatively small in comparison to the total system operation costs of the All Island 
power system”, but the “absolute sum of the cost reductions is not negligible”. The cost reductions due 
to perfect forecasting under the different scenarios assumed varied from 0.05% to 3.6% of overall 
system cost, with higher benefits for higher installations of wind power.   

Usaola et al. [354

 

] performed simulations of the production of different wind farms according to the 
Spanish market rules. They concluded that without using a model for wind power prediction, the 
income reduction due to deviations from schedule is 10%, 9,5% with a persistence model and 7.5% 
with a short-term prediction tool of average accuracy.     

In a widely quoted paper, Pinson, Chevallier and Kariniotakis [355

 

] “formulate a general methodology 
for deriving optimal bidding strategies based on probabilistic forecasts of wind generation”. By taking 
into account the uncertainty structure of the forecast, the bidding strategy based on probabilistic 
choice can lead to a reduction of more than half the regulation cost for the wind power producer, in 
their example of a multi-MW wind farm participating in the Dutch electricity market in 2002. 

Morales, Conejo and Pérez-Ruiz [356

 

] developed a methodology to “entitle a high decrease in the risk 
of profit variability for a comparatively low reduction in expected profit.” They stress the importance of 
good quality scenario sets representing the stochastic process. Additionally, if adjustment markets 
with shorter gate times are available, the “certainty gain” from the reduced error of the shorter 
prediction horizons needed allows for higher income and at the same time reduced risk. 

Brand and Kok [357

 

] showed for the Dutch market that the use of ECN’s forecasting tool 
Aanbodvoorspeller Duurzame Energie reduces the imbalance in the market, but does not remove it. 

 
Recently, a number of reports have shown that in markets with significant wind power penetration, the 
market price of bulk electricity depends inversely on the wind speed (see eg Hochmuth [358] for the 
Amsterdam Power Exchange, Moesgaard for the Danish part of Nord Pool [359], Sensfuß and Ragnitz 
[360] for the European Energy Exchange in Leipzig, and AEE [361, 362] for Spain).  Jónsson [363] 
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and Jónsson, Pinson and Madsen [364

 

] could show that the price variation on the Nord Pool day-
ahead market is actually better explained by the forecast wind power than by the actually realised 
wind power, which is logical if one considers how the market price is set – namely on the basis of the 
wind (and other) power and load forecasts the day before. 

 
Figure 43: Average spot price, categorised by intervals of forecasted wind 
power penetration, in DK-1 in the period January 4th 2006–October 31st 2007. 
Source: Jónsson, Pinson and Madsen [364] 

 
Hasche et al. [365

Also Dobschinski et al. [

] used the WILMAR model to assess the value of improved forecasts in operations 
in Germany. One interesting conclusion was that “Operational costs due to forecast errors could be 
reduced by one third if an overall stochastic optimization were used in scheduling.” 

366

 

] find that the balancing cost, especially for minute reserve, could be much 
lower if the TSOs would use the probabilistic distributions offered by modern forecasting models for 
the day-ahead prediction. However, this is mitigated by the fact that, as they show, a proper use of 
forecasts for the next few hours is even better. 

 
For the use in full grid model simulations, realistic wind power forecasts need to be simulated. This 
field has not received much attention, but for the EU WILMAR project, simulations were achieved in 
the framework of a masters thesis (Boone [269]). His work is based on the original development by 
Söder [139,367

The OPTIMATE project (see 

], who used a modified autoregressive process, ARWIN-1, to forecast piece-wise linear 
wind speeds. In addition, taking the correlation between sites into account, the smoother regional 
forecast is simulated with a modified multivariate autoregressive process, MARWIN-1. No NWP results 
were input to the analysis, therefore the usefulness of the approach would nowadays be limited to the 
first hours.  

optimate-platform.eu) aims at building an online modelling platform for 
the simulation of various market designs under given load and wind power forecast accuracies. For 
the wind power forecast simulations, they use a somewhat simplified WILMAR approach [368
 

]. 

Pinson et al. [369

 

] created probabilistically correct scenarios of wind power forecasts from the 
quantiles forecasts for a single wind farm, which also kept the interdependence structure of the 
forecast errors intact. Those can be used “for a large class of time-dependent and multistage decision-
making problems, e.g. optimal operation of combined wind-storage systems or multiple-market trading 
with different gate closures”. 

Gibescu, Brand and Kling [370] assessed the variability and predictability of wind power in the 
Netherlands for a system integration study. In order to be able to scale up the penetration of wind 
power, they developed a “statistical interpolation method to generate time series of system- and 

http://www.wilmar.risoe.dk/�
http://www.optimate-platform.eu/�


ANEMOS.plus The State-Of-The-Art in Short-Term Prediction of Wind PowerA Literature Overview, 2nd Edition 

DELIVERABLE D-1.2 2011-01-30   71 

participant-aggregated wind power production and forecast values [...]. The method takes into account 
the spatial and temporal correlations among multiple sites, as derived from the measurement and 
forecast data.” For the reduction of forecast error with size of the area, they report that “[t]he percent 
RMSE value of 14.2% for the system level is smaller compared with the 17–19% for the single wind 
farm level, and the percent MAE (9.8%) is also smaller [...]”.They also developed a theoretical model 
for the regional variance of wind speeds (not forecasting errors), depending on the number of wind 
farms, a characteristic distance or decay parameter (for their dataset, 610 km) and the average 
distance between the wind farms, for which they also develop a model. 
 
Holttinen [371 276, ] presented a different perspective to short-term forecasting. Since all current 
models have the error rising with the forecasting horizon, she looks at the benefits of adjusting the 
market rules to be more wind power friendly. In particular, the current NordPool agreement does trade 
on 1200 hours for the next full day ahead. This means that the most important forecasting has to be 
done for the 13-37 h prediction horizon at 1100 hours. The penalty for wrong predictions are fairly 
steep in this set-up, since either the producer has to sell the electricity on the spot market (if there is 
demand at all), or has to pay an up-regulation fee to the market.  This could be avoided with more 
flexible market mechanisms, eg looking only 6 hours or even only 1 hour ahead. Using the current 
forecasting tools for Denmark (WPPT), she calculates a 15% higher value of wind power for a 6-12-h 
market, and a 30% higher income for a 1-h market, compared to the current 13-37-h market. She also 
makes the point that wind power could yield higher income in Denmark, if there would be a cable 
connecting the western part with the east. In this set-up, the wind power forecasting errors would be 
reduced by 9 % due to the larger catchment area. Cali, Speckmann and Yves-Drenan [372

 

] agree: 
“The energy economic investigations point a monetary advantage on use of the Intra Day market to 
the balancing of the wind power forecasting error”. 

While not directly connected to wind power forecasts, Klein and Pielke [373, 374

 

] looked at lawsuits 
brought against weather forecaster in the US. Generally speaking, the results are only valid for the 
US. The public forecasters there are usually immune under the law, which especially applies to 
exercise of a discretionary duty. This is strictly true for the federal government, while state legislation 
usually provides similar arrangements. However, “the government’s failure to follow a mandatory 
statute, regulation, or policy could expose it to liability”. The situation is different for private forecasters. 
Only two cases were filed for weather related forecasts so far, both of which were ruled in favour of 
the defendant. In the case Brandt vs. The Weather Channel, the judges (amongst other things) argued 
that “because prediction of weather is precisely that — a prediction — a weather forecaster should not 
be subject to liability for an erroneous forecast. Predicting possible future events whose outcome is 
uncertain is not an exact science for which a broadcaster should be held liable.” From other fields 
(think securities), more court cases are available. In these cases, the main allegation was fraud, which 
is reasonable enough (and thrown out of court relatively easily if it is a false allegation). The authors 
conclude with three pieces of advice to limit the exposure of professional forecasters to lawsuits: “The 
best defense against liability is, first, for a company and its employees to make their forecasts in good 
faith using reasonable care. Second, companies should engage in a rigorous evaluation of their 
forecasts products. This would provide evidence of the skill of their forecast products generally, which 
may be useful should a liability issue arise, but could also help to scale their customers’ expectations 
about the accuracies and uncertainties of the products and services that they are purchasing. Third, 
the company’s services agreement should clearly warn customers that forecasting is not a precise 
science. While these measures will help to avoid lawsuits in the first place, lawsuits may still be filed. 
Consequently, liability insurance makes sense.” 
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8. User demands on forecasting models 
 
Schwartz and Brower [375

EdF has written a paper for the DISPOWER project, detailing the needs on a forecasting model. Since 
EdF is a company wearing different hats (it is a TSO, a power producer and trades on the European 
markets), it has slightly different requirements for these different tasks. For the daily planning 
procedures, they want forecasts before 0600 hours for the same day and the next, until 2400 hours. 
This means a 48-hour forecast for the whole of France, every 30 minutes. Uncertainties should be 
shown as a band around the most probable value. Since they are the TSO, with a power purchase 
obligation, they have performance figures for all wind turbines in France (but seemingly not online). 
Additionally, they would like to receive a warning when a storm comes and triggers the shut down of 
wind farms.  

] interviewed schedulers, research planners, dispatcher and energy 
planners at seven US utilities and asked for their needs in a wind energy forecast. Among the most 
needed was a day-ahead forecast, to be given in the morning for the unit commitment schedule and 
energy trading for the following day. Hourly forecasts, expressed in likely MW and with error bars, 
were another wish. However, one important result was that if good tools were available, operators in 
utilities with enough penetration would use these tools. This is also our experience with operators from 
Danish utilities. 

For the weekly planning, they would like to see the same type of forecasts on a 5-10 day horizon. For 
trading, the requirements are actually rather similar than for the daily planning. Additionally, they would 
like to see more statistical measures of the expected performance (eg different quantiles), and get the 
forecast for most other nations in Europe, too. 
The Irish TSO gave the following list of demands [201]: 

• “Forecasts should be available for individual wind farms and groups of wind farms. 
• Forecasts should be wind power output, in MW, rather than wind speed, 
• hourly forecasts extending out to a forecast horizon of at least 48 hours, 
• an accurate forecast with an associated confidence level (dispatchers would tend to be more 

conservative when dealing with larger forecast uncertainties), 
• a reliable forecast of likely changes in wind power production and 
• a better understanding of the meteorological conditions which would lead to the forecasts 

being poor. 
• Use of historical data to improve accuracy of forecast over time - the method for doing this 

needs to be built into the program.” 
In Norway [146], a questionnaire sent to Norwegian wind energy producers and visits to a few of the 
larger energy companies revealed the following five points: 

• “The forecasts should be available early in the morning (before 08:00) in order to give time for 
consideration of the forecast before trading at noon. 

• Wind power production should be predicted hourly, uncertainty intervals should also be given. 
• Forecasts up to +36 h length are desirable. 
• Updated forecasts in the afternoon based on production data. 
• Forecasts several days ahead are useful for planning of maintenance.” 

Coppin and Katzfey [376

 

] wrote a fine piece on the applicability of the state-of-the-art for the then 
Australian market operator and system operator, the National Electricity Market Management 
Company NEMMCO (now the Australian Energy Market Operator, AEMO), covering all issues from 
wind to power. He applied the current knowledge (based in part on an earlier version of this report) to 
the forecasting time frames given by NEMMCO: from Long-Term (defined as a yearly outlook, to be 
tackled with climatology) over Medium-Term (week to month ahead – not really better than the Long-
Term forecast) to Short-Term (up to 7 days, done employing NWP models), Very Short-Term  for pre-
dispatch (up to 40 hours ahead with 30-min accuracy, once a day at 12.30) and Near Real-Time (5-
min regional demand for the next 5-min period). For the two shortest time periods, he recommends 
that this should be the responsibility of NEMMCO, while the longer time scales should fall into the 
responsibility of the wind farm operators, with the cut-off being where NWP models have to be 
employed (3-6 hours ahead). 

The ISO New England Wind Integration Study [377] recommends the following for choice of a short-
term prediction provider: it should be a centralised system including dedicated probabilistic ramp and 
severe weather forecasts. The provider should undergo a trial period, and should be doubled up with a 
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second forecast provider, both with competencies in offshore forecasting. The forecasting system 
should be fully integrated in the control room, where all users should undergo “an aggressive training 
program”. 
 
During the ANEMOS, ANEMOS.plus and SafeWind projects, the end user requirements for forecasts 
were investigated and reported. Many of those requirements had to do with uptime of the installation, 
user and data security, and presentation. 
In order to integrate wind power forecasts seamlessly in utilities’ SCADA systems, Giebel and Gehrke 
[378

 

] proposed an extension to the widely used IEC61850 and IEC61400-25 family of data transfer 
protocols for sub-stations and other grid connected equipment to also include forecast data. 

Bessa et al. [379

Moreover, an information theoretic learning training criterion called parametric correntropy is 
introduced as a means to correct problems detected in other criteria and achieve more satisfactory 
compromises among conflicting criteria, namely forecasting economic value and quality (magnitude of 
forecast error). The authors shown for three real wind farms participating in the Iberian electricity 
market that the objectives of the wind power generators may lead to a preference for biased forecasts, 
which may be in conflict with the larger needs of secure operating policies. The parametric correntropy 
approach achieves acceptable “compromise” solutions to market participants and system operators. 

] give a new view of the relative importance of the forecast error in a multicriteria and 
multi-perspective paradigm (i.e. forecast consumer paradigm), in which biased point forecasts could 
be produced to increase the market income, and to stress the conflicting objectives that may exist 
between different users (or stakeholders). Different user groups may have conflicting interests in an 
electricity market environment, and therefore, the choice of a forecasting model is not neutral. For 
instance, system operators are interested in minimizing operational costs while maintaining a high 
level of reliability. In contrast, wind generation companies are mainly interested in maximizing their 
income levels in the electricity market. Hence, in some conditions, the definition of a “good” forecast 
varies with different forecast users. 

 
 
For users of short-term predictions, there is a series of workshops, probably the closest thing to an 
actual forecast user group there is, run by Giebel (see powwow.risoe.dk/BestPracticeWorkshop.htm). 
The series had so far (2010) four instalments, the next one is going to be 2011 in Aarhus, Denmark. 
The slides of the participant talks are available from the website. Most notably, it is interesting to see 
the different challenges that the different utilities or TSOs have, and how they use the wind power 
forecasts to address those challenges. During the POW’WOW project, a report was written on the first 
two workshops [19]. “Some major results of the workshops were: 
- Competition improves accuracy. 
- The value of accurate wind power predictions is appreciated. 
- The market for wind power prediction models is mature, with many service providers. 
The Best Practice in the use of short-term forecasting of wind power can be summarised as: 
• Get a model 
• Get another model (NWP and / or short-term forecasting model) 
• Get a good nationwide model instead of many simple and cheap models 
• Balance all errors together, not just wind 
• Use the uncertainty / pdf 
• Use intraday trading 
• Use longer forecasts for maintenance planning 
• Meteorological training for the operators 
• Meteorological hotline for special cases 
Additionally, if you are setting up a system for dealing with wind power in your country,” there are 
essentially two ways to deal with forecasting: it can be a demand on every wind power producer, as 
for example in Spain or the UK, or it can be done with a centralised system as in Germany or 
Denmark. Since ”the system operator needs to have a good quality forecasting tool anyway, so all the 
other producers of wind power might as well forego the need to get forecasts themselves.” 
 
 

http://powwow.risoe.dk/BestPracticeWorkshop.htm�
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9. The ANEMOS projects 
 
The ANEMOS project (“Development of a Next Generation Wind Resource Forecasting System for the 
Large-Scale Integration of Onshore and Offshore Wind Farms”) was a 4 years R&D project that started in 
October 2002. It was funded by the European Commission under the 5th Framework Programme 
(ENK5-CT-2002-00665). A number of 22 partners participated from 7 countries including research 
institutes, universities, industrial companies, utilities, TSOs, and agencies.    
A coordination action was the next step for the core partners, together with experts on waves and 
wakes. Also, in this action, the ISET was a partner, which it was not for the ANEMOS projects. This 
coordination action was called POW’WOW (Prediction of Waves, Wakes and Offshore Wind, see 
powwow.risoe.dk). It ran from 2006 to 2009, funded also by the European Commission (Contract No 
019898(SES6)).  
As the major follow-up, two projects are running now (and fund the writing of the second edition of this 
report): ANEMOS.plus and SafeWind. The former is sponsored by DG TREN (TRansport and ENergy) 
and has a stronger demonstration aspect, focussing on the maximum benefit for the end users 
through tools to schedule power plants and storage, to better trade on the markets and to integrate 
wind on shorter times. For example, Matos and Bessa [380

 

] presented a probabilistic model that uses 
as input a probabilistic wind power forecast (non-parametric represented by quantiles) and describe 
the risk of each reserve level by a set of risk/reserve and risk/cost of reserve curves. After interaction 
with the decision-maker (system operator), the tool outputs the reserve levels to be set for the next 
day (or current day) that either: 1) enforce a maximum acceptable risk level; or 2) respect a trade-off 
limit between risk and reserve cost. This approach is being demonstrated at the Portuguese system 
operator (REN) control centre in the framework of the ANEMOS.plus project. 

 
Figure 44: The consortium of the ANEMOS.plus project. 

 
More research is done in the latter, SafeWind (Grant Agreement no 213740, funded by DG Research). 
Here, the main emphasis is on extreme events, be it meteorologically, electrical system wise or 

http://www.anemos-plus.eu/�
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financially extreme. Pinson and the SafeWind team [381

As major new partner there is the ECMWF, to improve the use of ensemble products for wind power. 

] have compiled a catalogue of extreme 
events, which resulted of a poll amongst project participants. Most importantly, an extreme event was 
very user dependent. A meteorologist would answer “a significant deviation from climatology”, an actor 
on the energy system would answer that it needs to have sizeable consequences either financially or 
for the system safety, and an operator of wind farms is interested in small scale events which could be 
dangerous for the turbines.  
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10. Concluding remarks 
 
Short-term forecasting has come a long way since the first attempts at it. Often, running the grid would 
not be possible without it, in situations with more than 100% instantaneous power from wind in the 
grid. The current crop of models, typically combining physical and statistical reasoning, is fairly good, 
although the accuracy is limited by the employed NWP model. 
Short-term prediction consists of many steps. For a forecasting horizon of more than 6 hours ahead, it 
starts with a NWP model. Further steps are the downscaling of the NWP model results to the site, the 
conversion of the local wind speed to power, and the upscaling from the single wind farms power to a 
whole region. On all these fronts, improvements have been made since the first models. Typical 
numbers in accuracy are an RMSE of about 10-15% of the installed wind power capacity for a 36 hour 
horizon.  
The main error in a short-term forecasting model stems from the NWP model. One current strategy to 
overcome this error source, and to give an estimate of the uncertainty of one particular forecast, is to 
use ensembles of models, either by using multiple NWP models or by using different initial conditions 
within those.  
 
For the previous version of this report in 2003, I wrote: “Noteworthy is the current explosion in working 
models”, to then spell out most of the major models in existence. Now I believe this is typical for an 
established field of science, where progress is made continuously on the existing parts, while 
occasionally, a new sub-field is opened (like recently, ramp and variability forecasting). Also, the 
appearance (and occasionally quick disappearance) of groups with good or sometimes, mediocre 
papers seems typical of an established arm of science. Wind power forecasting research requires 
mainly a computer, and access to measured and meteorological data, all of which are generally 
available or can be made available even in small and not so well-equipped research institutes.  
 
Equally relevant was this prediction “Additionally, some of the traditional power companies have 
shown interest in the field, like Siemens, ABB or Alstom. This could start the trend to treating short-
term prediction models as a commodity to be integrated in energy management systems or wind farm 
control and SCADA systems.” Vestas for instance is building up so much expertise in weather 
forecasting that they just released a weather forecasting app for the iPhone based on their in-house 
NWP models. 
 
Information and communication technology is expected to play a major role in integrating wind power 
prediction tools in the market infrastructure. Another aspect of the “commodisation” of short-term 
prediction is the integration of or into decision making tools for the end users, like the scheduling 
optimisation module or the trading module developed and integrated by ANEMOS.plus. 
 
Wind power prediction software is not “plug-and-play” since it is always site-dependent. In order to run 
with acceptable accuracy when installed to a new site, it is always necessary to devote considerable 
effort for tuning the models (in an off-line mode) based on the characteristics of the local wind profile 
the local environment of the wind farms. It is here where the experience of the installing institute 
makes the largest difference. Due to the differences in the existing applications (flat, complex terrain, 
offshore) it is difficult to compare prediction systems based on available results. An evaluation of 
prediction systems needs however to take into account their robustness under operational conditions 
and other factors.   
Despite the appearance of multiple similar approaches today, further research is developed in several 
areas to further improve the accuracy of the models but also to assess the uncertainty of the 
predictions. Combination models have received due attention recently. So have ramp and variability 
forecasts. Optimal use of the forecasts by the end users remains a topic. The feedback from existing 
on-line applications continues to lead to further improvements of the state-of-the-art prediction 
systems.   
 
The aim of the present report is to contribute to the current research on wind power forecasting though 
a thorough review of the work developed in the area in the last decades. Wind power forecasting is a 
multidisciplinary area requiring skills from meteorology, applied mathematics, artificial intelligence, 
energy, software engineering, information technology and others. It appears as a fairly mature and 
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nearly off-the-shelf technology today, thanks not the least to some European Union Institutes and 
companies nurturing the field for more than a decade. This has been the result of an early recognition 
by the EU, as well as the pioneer countries in wind energy, of the necessity to anticipate efficient 
solutions for an economic and secure large-scale integration of wind power. The expectations from 
short-term wind power forecasting today are high since it is recognised as the means to allow wind 
power to compete on equal footing with the more traditional energy sources in a competitive electricity 
marketplace.   
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Ricardo Bessa. I’m especially grateful to Claire Vincent of Risø for the most thorough review this 
report has gotten in the last 7 years. 
In general, this report is fairly personal – any omissions do not reflect bias towards or against certain 
groups, but are usually due to me not being totally up to date. Having said that, I’m mostly referring to 
the literature, not the market place when writing this report, so commercial offerings which have not 
talked about it in scientific circles probably will not appear here. 
 
 



ANEMOS.plus The State-Of-The-Art in Short-Term Prediction of Wind PowerA Literature Overview, 2nd Edition 

DELIVERABLE D-1.2 2011-01-30   79 

12. Glossary 
 
a.g.l. Above ground level 

AESO: Alberta Electrical System Operator 

ANN: Artificial Neural Network 

ARMA: Autoregressive Moving Average (a class of statistical models) 

ARIMA: Autoregressive Integrated Moving Average 

ARMINES: Joint Research Unit with Ecole des Mines de Paris. 

AWEA: American Wind Energy Association 

AWPT: Advanced Wind Power Prediction Tool, of Armines 

BPA: Bonneville Power Administration 

CLRC: Council for the Central Laboratory of the Research Councils, UK 

DMI: Danish Meteorological Institute 

DMS:  Distribution Management System. 

DTU: Technical University of Denmark 

DWD: Deutscher Wetterdienst (German Weather Service) 

ECMWF: European Centre for Medium Range Weather Forecasts, Reading, UK 

ECN: Energy research Centre of the Netherlands 

EdF: Electricité de France, the French large electrical utility 

EGARCH: Exponential GARCH 

EGU: European Geophysical Union 

EMS:  Energy Management System 

EnBW: Energieversorgung Baden-Württemberg, the TSO in the south-west of Germany 

EPS: (The ECMWF) Ensemble Prediction System 

ERCOT: Electricity Reliability Council Of Texas 

ESP:  Energy Service Provider 

ETA: One of NCEP’s mesoscale models 

EWEA: European Wind Energy Association 

EWEC: European Wind Energy Conference (since 2011 EWEA Annual Event) 

FINO: Forschungsplattformen in Nord- und Ostsee, currently three offshore 
measurement masts in the North Sea (1 and 3) and the Baltic Sea (FINO 2) 

GARCH: Generalized AutoRegressive Conditional Heteroscedasticity, a tool to 
characterize and model time series 

GFS: Global Forecasting System, a NWP provided globally for free by NOAA 

HIRLAM: High Resolution Limited Area Model, a NWP model developed by the met. 
Institutes of Denmark, France, Norway, Finland, Spain, and Ireland 

Horizon: The look-ahead time, sometimes used for the maximum a NWP can deliver 

ILEX: ILEX Energy Consulting is now a branch of Pöyry Energy Consulting 

IMM: Informatics and Mathematical Modelling at DTU, Lyngby, Denmark 

IPP:  Independent Power Producer 
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ISET: Institut für Solare Energieversorgungstechnik e.V. – core part of what is now the 
Fraunhofer IWES. 

ISO: Independent System Operator (like a TSO, but does not own the transmission 
system) 

IWES: Fraunhofer-Institut für Windenergie & Energiesystemtechnik 

LM: Lokalmodell (a NWP model of the DWD) 

LQR: Local Quantile Regression 

MAE:  Mean Absolute Error 

MM5: Mesoscale Model 5, a formerly popular mesoscale code developed at 
Pennsylvania State University and NCAR (successor is WRF) 

MOS: Model Output Statistics, a means to remove residual error 

MRI: Meteo Risk Index, developed by Armines 

MSEPS: Multi-Scheme Ensemble Prediction System (75 members, by WEPROG) 

NCEP/NCAR: National Center for Environmental Protection / National Center for Atmospheric 
Research, Golden, Colorado, US 

NETA: New Energy Trading Arrangements, legislation in the UK 

NWP:  Numerical Weather Prediction, usually run by meteorological institutes 

NOAA: National Oceanic and Atmospheric Administration, US 

PBL: Planetary Boundary Layer, the lowest part of the atmosphere 

Persistence: Simple prediction method assuming that the wind production in the future will be 
the same as now.  

Prediktor: Short-term prediction system developed by Risø National Laboratory, Denmark 

Previento: Short-term prediction system developed by University of Oldenburg, Germany, 
now commercialised by energy & meteo systems GmbH 

PSO:  
Power System Operator. In Denmark PSO stands for Public Service Obligation, 
a statute under which some money is collected from the electricity bills and used 
towards strengthening the network (including research) 

RAL: Rutherford Appleton Laboratory, Didcot, UK. Part of CLRC. 

RLS: Recursive Least Squares 

RMSE: Root Mean Square Error 

SCADA: Supervisory Control and Data Acquisition 

SERG: Sustainable Energy Research Group of UCC 

Sipreólico: Short-term prediction system developed by University Carlos III, Madrid, Spain 

TSO:  Transmission System Operator 

UCC: University College Cork 

WILMAR: 
Wind Power Integration in Liberalised Electricity Markets, an EU financed 
project led by Risø National Laboratory (now Risø DTU), which developed the 
planning software with the same name 

WPPT:  Wind Power Prediction Tool, the forecasting system developed at IMM (DTU), 
now commercialised by DTU spin-off Enfor (see Enfor.eu) 

WRF Weather Research and Forecasting model, successor to MM5 

Zephyr: The collaboration between Risø, IMM and Enfor 
 

http://enfor.eu/�
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13. Additional Literature 
This chapter contains literature which I found the links to, but could not find myself, or where I didn’t 
find a place for in this report. It might be useful to you, so I leave it in here. Many of those come from 
the Costa State-of-the-Art paper [11]. 
 
Akylas E, Tombrou M, Panourgias J, Lalas D: The use of common meteorological predictions in 
estimating short term wind energy production in complex terrain. In: Watson R, editor. Proceedings of 
European wind energy conference, Dublin Castle, Ireland, 1997. p. 329–32. 

Bailey B, Stewart R.: Wind forecasting for wind power stations. In: Galt J, editor. Proceedings of wind 
energy conversion, Edinburgh, UK, 1987. p. 265–9. 

Bailey B, Stewart R.: Wind forecasting for wind power stations. In: Proceedings of the ninth British 
wind energy association conference, Edinburgh, 1987. 

Benoit R, Yu W.: Developing and testing of wind power forecasting techniques for Canada. In: 
Proceedings of the first joint action symposium on wind forecasting techniques. Norrköping: 
International Energy Agency (IEA); 2002. 

Beyer H, Degner T, Hausmann J, Hoffmann M, Ruján P.: Short term prediction of wind speed and 
power output of a wind turbine with neural networks. In: Tsipouridis J, editor. Proceedings of European 
wind energy conference, Thessaloniki-Macedonia, Greece, 1994. p. 349–52. 

Beyer H, Heinemann D, Mellinghoff H, Mönnich K, Waldl H. Forecast of regional power output of wind 
turbines. In: Proceedings of European wind energy conference, Nice, 1999. 

Borja M, Jaramillo O, Miranda U.: Prospects for the application of wind forecasting techniques in La 
Ventosa, México. In: Proceedings of the first joint action symposium on wind forecasting techniques. 
Norrköping: International Energy Agency (IEA); 2002. 

Bossanyi E.: Short-term stochastic wind prediction and possible control applications. In: Proceedings 
of the Delphi workshop on wind energy applications; 1985. 

Bossanyi E.: Stochastic wind prediction for turbine system control. In: Proceedings of the seventh 
British wind energy association conference, Oxford, UK, 1985. 

Carter, G.M., D.B. Gilhousen: The Potential Impact of Automated Wind Guidance on Wind Energy 
Conversion Operations. 1980, 13pp. 

Costa A, Crespo A, Feitosa E, Navarro J, Jiménez P, García E, et al.: Mathematical and physical wind 
power forecasting models: a proposal for the UPMPREDICTION project. In: Proceedings of the 
second joint action symposium on wind forecasting techniques. Lyngby: International Energy Agency 
(IEA); 2004. 

Costa A, Crespo A, Migoya E.: First results from a prediction project. In: Proceedings of European 
wind energy conference, Madrid, 2003. 

Costa A, Crespo A, Navarro J, Palomares A, Madsen H.: Modelling the integration of mathematical 
and physical models for short-term wind power forecasting. In: Proceedings of European wind energy 
conference, Athens, 2006. 

Fellows A, Hill D.: Wind and load forecasting for integration of wind power into a meso-scale electrical 
grid. In: Proceedings of European community wind energy conference, Madrid, Spain, 1990. p. 636–
40. 
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Gallardo C, Gaertner M, Tejeda C, Martínez N, Calabria S, Martínez N, et al.: The Casandra project: 
first results of a new wind power operational forecasting system in Spain. In: Proceedings of European 
wind energy conference, Madrid, 2003. 

Gilhousen, D.B.: Development and Testing of Model Output Statistics for Wind Forecasts at Wind 
Turbine Generator Sites. DOE/RL/10046-1. NWS/NOAA, Silver Spring, MD 20910, 1979, 25pp.  

Gow G. Short term wind forecasting. In: Proceedings of the first joint action symposium on wind 
forecasting techniques. Norrkö ping: International Energy Agency (IEA); 2002. 

IEA: Variability of Wind Power and other Renewables: Management Options and Strategies. Position 
paper, 2005 

Kaminsky F, et al.: Time series models of average wind speed within synoptic weather categories. In: 
Proceedings of the fourth ASME wind energy symposium; 1985. p. 215–9. 

Landberg L: Implementing wind forecasting at a utility. In: Tsipouridis J, editor. Proceedings of 
European wind energy conference, Thessaloniki-Macedonia, Greece, 1994. p. 357–60. 

Lozano T.: Prediction and planning of wind energy production. In: Proceedings of European wind 
energy conference, Madrid, 2003 

Machenhauer B. HIRLAM Final Report. HIRLAM Technical Report 5, Copenhagen, Denmark, 1988 

Marciukaitis M, Katinas V, Kavaliauskas A: Wind power usage and prediction prospects in Lithuania. 
Renewable and Sustainable Energy Reviews 2008;12:265–77. 

Moliner M.: Predicción del viento: España toma la delantera. Energías Renovables 2004;28:20–2. 

Møller, J.K., H.Aa. Nielsen, and H. Madsen: Time-adaptive quantile regression. Computational 
Statistics & Data Analysis, vol. 52, no. 3, pp. 1292–1303, Jan. 2008. 

Notis: Learning to Forecast Wind at Remote Sites for Wind Energy Applications. 1983 

Palomares A, de Castro M.: Short-term wind prediction model at the Strait of Gibraltar based on a 
perfect prognosis statistical downscaling method. In: Proceedings of European wind energy 
conference, Madrid, 2003 

Ramirez-Rosado, I.J., L.A. Fernandez-Jimenez, C. Monteiro, J. Sousa, and R. Bessa: Comparison of 
two new short-term wind-power forecasting systems. Renewable Energy 34, pp. 1848-1854, 2009 

Reikard, G.: Regime-switching models and multiple causal factors in forecasting wind speed. Wind 
Energy 13, pp. 407-418, 2010 

Ryan M, Walsh L.: Wind generation in the Irish system. In: Proceedings of the second joint action 
symposium on wind forecasting techniques. Lyngby: International Energy Agency (IEA); 2004. 

Schwartz M, Schwartz B, Brundage K.: Forecasting wind energy application of a NOAA weather 
forecast model. In: Proceedings of the second joint action symposium on wind forecasting techniques. 
Lyngby: International Energy Agency (IEA); 2004 

Sloughter, J.M., T. Gneiting, and A.E. Raftery: Probabilistic Wind Speed Forecasting Using Ensembles 
and Bayesian Model Averaging. Journal of the American Statistical Association 105(489), pp. 25-35, 
March 2010 
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